欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (3): 35-40.doi: 10.13385/j.cnki.vacuum.2022.03.08

• Thin Film • Previous Articles     Next Articles

Influence of Incident Energy on the Surface Roughness and Film/Substrate Adhesion Strength of Epitaxially Grown Cr Films:Molecular Dynamics Simulation

HU Tian-shi1, TIAN Xiu-bo1, LIU Xiang-li2, GONG Chun-zhi1   

  1. 1. State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150000, China;
    2. Shenzhen Engineering Laboratory of Aerospace Detection and Imaging, School of Materials Science and Engineering, Harbin Institute of Technology(Shenzhen), Shenzhen 518055, China
  • Received:2021-11-27 Online:2022-05-25 Published:2022-06-01

Abstract: Transition layer is a key factor to improve the film/substrate relationship and increase the quality of the film. In this paper, the epitaxially grown process of Cr, which is a common transition layer material, was simulated using molecular dynamics method. Surface topography, roughness, radial distribution function and adhesion strength was analyzed to study the effect of incident energy on the film quality. The results show that at the initial stage of deposition, the film/substrate interfacial interaction was the main factor affecting the growth mode of the film. As the incident energy increased, the growth mode changed from Frank-Vander Merve to Volmer-Weber. As the deposition process progressed, the film surface roughness gradually raised during low-energy deposition(15-50eV). However, the opposite trend exhibited during high-energy deposition(75eV) because of the etching effect, and the surface roughness decreased gradually. Meanwhile, the film/substrate interface was destroyed by the shallow injection in the lower energy range, which weakened the film/substrate adhesive strength. Further improving the deposition could improve the film/substrate adhesive effect by forming a composition gradient layer. The research results in this paper shows important guiding significance for the thin film deposition process: increasing the incident energy during the deposition process does not meaning a positive effect, and it must be controlled in a suitable energy range.

Key words: incident energy, growth mode, surface roughness, adhesion strength, molecular dynamics

CLC Number: 

  • TB43
[1] REITER A E, DERFLINGER V H, HANSELMANN B, et al.Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation[J]. Surf.Coat.Technol., 2005, 200(7): 2114-2122.
[2] ZHOU S H, KUANG T C, QIU Z G, et al.Microstructural origins of high hardness and toughness in cathodic arc evaporated Cr-Al-N coatings[J]. Appl.Surf.Sci., 2019, 493: 1067-1073.
[3] WANG G G, ZHANG R Y, ZHOU R, et al.Effect of ECR-assisted microwave plasma nitriding treatment on the microstructure characteristics of FCVA deposited ultra-thin ta-C films for high-density magnetic storage applications[J]. Appl.Surf.Sci., 2010, 256(10): 3024-3030.
[4] WARCHOLINSKI B, GILEWICZ A, MYSLINSKI P, et al.Effect of nitrogen pressure and substrate bias voltage on the properties of Al-Cr-B-N coatings deposited using cathodic arc evaporation[J]. Tribol.Int., 2021, 154: 106744.
[5] GUNDA R, BISWAS S K, BHOWMICK S, et al.Mechanical properties of rough TiN coating deposited on steel by cathodic arc evaporation technique[J]. J.Am.Ceram.Soc., 2010, 88(7): 1831-1837.
[6] HU J, TIAN X B, LIU H, et al.Enhanced discharge and microstructure of the ta-C coatings by electromagnetically enhanced cathodic arc at argon atmosphere[J]. Surf.Coat.Technol., 2018, 365: 227-236.
[7] KONG Y, TIAN X B, GONG C Z, et al.Microstructure and mechanical properties of Ti-Al-Cr-N films: Effect of current of additional anode[J]. Appl.Surf.Sci., 2019, 483: 1058-1068.
[8] UDDEHOLM.Grinding of uddeholm tool steels[M]. 8th ed.[S.L.]Uddeholm, 2018.
[9] UDDEHOLM.Polishing of uddeholm mould steel[M]. 6th ed.[S.L.]Uddeholm, 2016.
[10] SPALVINS T. BRAINARD W A.Nodular growth in thick-sputtered metallic coatings[J]. J.Vac.Sci.Technol., 1974, 11: 1186-1192.
[11] PANJAN P, DRNOVEK A, GSELMAN P, et al.Review of growth defects in thin films prepared by PVD techniques[J]. Coatings, 2020, 10(5): 447.
[12] MATTOX D M.Handbook of physical vapor deposition(PVD) processing[J]. Matel Finishing, 1998, 61(1): 553-734.
[13] HOVSEPIAN P E, EHIASARIAN A P.Six strategies to produce application tailored nanoscale multilayer structured PVD coatings by conventional and high power impulse magnetron sputtering(HIPIMS)[J]. Thin Solid Films, 2019, 688: 137409.
[14] THORNTON J A, HOFFMAN D W.Stress-related effects in thin films[J]. Thin Solid Films, 1989, 171(1): 5-31.
[15] KIM S H, SUN W N, LEE N E, et al.Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma[J]. Surf.Coat.Technol., 2005, 200(7): 2072-2079.
[16] PLIMPTON S.Fast parallel algorithms for short-range molecular dynamics[J]. J.Comput.Phys., 1995, 117(1): 1-19.
[17] FONIN M, DEDKOV Y S, RÜDIGER U, et al. Growth and morphology of the epitaxial Fe(110)/MgO(111)/Fe(110) trilayers[J]. Surf.Sci., 2007, 601(10): 2166-2170.
[18] PERSAUD R, NORO H, VENABLES J A.Structure and intermixing in Fe/Fe(110) and Fe/Ag/Fe(110) multilayers[J]. Surf.Sci., 1998, 401(1): 12-21.
[19] BONNY G.Interatomic potential for studying ageing under irradiation in stainless steels:the FeNiCr model alloy[J]. Model.Simul.Mater.Sc., 2013, 21(8): 5897-5909.
[20] DAW M S, BASKES M I.Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals[J]. Phy.Rev.B, 1984, 29(12): 6443-6453.
[21] 艾立强, 张相雄, 陈民, 等. 类金刚石薄膜在硅基底上的沉积及其热导率[J]. 物理学报, 2016, 65(9): 257-263.
[22] 王恩哥. 薄膜生长中的表面动力学(Ⅰ)[J]. 物理学进展, 2003, 23(1): 1-61.
[23] AWAZU K, WANG X M, FUJIMAKI M, et al.Elongation of gold nanoparticles in silica glass by irradiation with swift heavy ions[J]. Phys.Rev.B, 2008, 78(5): 054102.
[24] 王康. Cu64Zr36非晶合金薄膜沉积与纳米压痕分子动力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
[25] 孙永丽. Cu-Zr 基非晶合金结构及动力学数值模拟[D]. 哈尔滨: 哈尔滨工业大学, 2010.
[26] BALASHABADI P, LARIJANI M M, SHOKRI A A, et al.The effect of bias voltage on microstructure and hardness of TiN films grown by ion coating deposition[J]. Eur.Phys.J.Plus, 2015, 130(2): 1-10.
[27] NAKAZAKI N, TSUDA H, TAKAO Y, et al.Two modes of surface roughening during plasma etching of silicon: role of ionized etch products[J]. J.Appl.Phys., 2014, 116(22): 223302.
[28] GUTIERREZ-URRUTIA I, ZAEFFERER S, RAABE D.The effect of grain size and grain orientation on deformation twinning in a Fe-22wt.%Mn-0.6wt.%C TWIP steel[J]. Mat.Sci.Eng.A, 2010, 527(15): 3552-3560.
[29] WU P K, LU T M.Metal/polymer adhesion enhancement by reactive ion assisted interface bonding and mixing[J]. Appl.Phys.Lett., 1997, 71(18): 2710-2712.
[30] 张世旭. Cu团簇沉积到Fe(001)表面的分子动力学模拟[D]. 兰州: 兰州大学, 2014.
[31] 徐鸣. 离子注入对DLC膜基的改性研究[D]. 上海: 上海交通大学, 2007.
[1] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[2] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
[3] WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong. Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating [J]. VACUUM, 2021, 58(1): 63-66.
[4] ZHENG Cai-guo, CHEN Qing-chuan, NIE Jun-wei, LI Min-jiu, CHEN Mei-yan. Study on Characteristics of Plasma Polished Quartz Glass [J]. VACUUM, 2020, 57(4): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .