欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (1): 63-66.doi: 10.13385/j.cnki.vacuum.2021.01.13

• Thin Film • Previous Articles     Next Articles

Effects of Extra Biased Electric Field on Structure and Properties of TiN Films Deposited by Arc Ion Plating

WU Ying-tong, LI Xiao-min, BAI Rui, WANG Dong-wei, WANG Yu, HUANG Mei-dong   

  1. College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
  • Received:2020-05-23 Online:2021-01-25 Published:2021-01-26

Abstract: In order to solve or reduce macro-particle pollution in arc ion plating, an extra biased electric field is applied during the deposition of TiN films. The influence of extra biased voltage on surface morphology, microstructure, micro-hardness, adhesion strength and friction coefficient of the TiN films is investigated. The results show that all the TiN films have(111) preferential growth plane, and the microstructure is little affected by the extra biased electric field. Both adhesion strength and micro-hardness of the TiN films increase with increasing voltage from 0 to 24V, followed by a small decrease at 32V. The extra biased field greatly improves surface morphology of TiN films, and the smallest friction coefficient of 0.115 is achieved at 32V.

Key words: arc ion plating, extra biased electric field, surface morphology, micro-hardness, adhesion strength

CLC Number: 

  • TG156.88
[1] 晏鲜梅, 熊惟皓. 氮化钛硬质薄膜的制备方法[J]. 材料导报, 2006, 20: 36-38.
[2] 杨波波. 多弧离子镀技术制备TiN基纳米复合多层膜及其性能研究[D]. 济南: 山东大学, 2019.
[3] 张谷令, 王久丽, 杨武保, 等. 内表面栅极等离子体源离子注入TiN薄膜及其特性研究[J]. 物理学报, 2003, 52(9): 2213.
[4] 王世雄, 陈长川. 国外硬质膜离子镀技术及其进展[J]. 工具技术, 1993(1): 4-8.
[5] 刘恋. Cr12MoV钢表面电弧离子镀TiCN膜及复合处理技术研究[D]. 广州: 华南理工大学, 2019.
[6] 匡君君, 姜春玉, 刘宏斌. 电弧离子镀技术在航空工业上的应用[J]. 电镀与精饰, 2016, 38(8): 23-26.
[7] 张晓晖, 李建宇. 脉冲电流密度对磁控溅射制备TiN薄膜组织与性能的影响[J]. 材料保护, 2019, 52(7): 112-115.
[8] 赵彦辉, 郎文昌, 肖金全, 等. 电弧离子镀的旋转横向磁场弧源设计[J]. 真空科学与技术学报, 2013, 33(4): 387-391.
[9] Huang M D, Lin G Q, Zhao Y H, et al.Macro-particle reduction mechanism in biased arc ion plating of TiN[J]. Surface and Coating Technology, 2003, 176: 109-114.
[10] 杨木. 多弧离子镀磁过滤装置关键技术研究[D]. 合肥: 合肥工业大学, 2018.
[11] 张钧, 赵彦辉. 多弧离子镀技术与应用[M]. 北京: 冶金工业出版社, 2007.
[12] 初国强, 刘星元, 刘云, 等. 加有电场的有机蒸发镀膜装置: 中国, 01208447. 6[P].2002-01-23[2020-4-22].
[13] Selwyn G S, Singh J, Bennett R S.In situ laser diagnostic studies of plasma-generated particulate contamination, J. Vac[J]. Sci. Technol. 1989, A7: 2758-2765.
[14] Wu J J, Miller R J.Measurements of charge on submicron particles generated in a sputtering process[J]. J. Appl. Phys., 1990, 67: 1051-1054.
[15] Nowlin R N, Carlile R N.The electrostatic nature of contaminative particles in a semiconductor processing plasma[J]. J. Vac. Sci. Technol. 1991, A9: 2825-2833.
[16] 黄美东. 脉冲偏压电弧离子镀低温沉积研究[D]. 大连: 大连理工大学, 2002.
[17] 李鹏, 黄美东, 佟莉娜, 等. 磁控溅射与电弧离子镀制备TiN薄膜的比较[J]. 天津师范大学学报(自然科学版), 2011, 31(2): 32-37.
[18] 梁启超. 多弧离子镀TiN和TiAlN硬质薄膜的制备及性能研究[D]. 十堰: 湖北汽车工业学院, 2017.
[19] 肖娜, 杜菲菲. 合理使用划痕法及显微法测定TiN薄膜与基体结合力[J]. 理化检验-物理分册, 2015, 51(9): 619-622.
[20] 瞿全炎, 邱万奇, 曾德长, 等. 划痕法综合评定膜基结合力[J]. 真空科学与技术学报, 2009, 29(2): 184-187.
[21] 郭岩, 叶智, 徐勃, 等. 多弧离子镀TiCrSiCN硬质薄膜的微观结构与摩擦学性能[J]. 电镀与涂饰, 2019, 38(21): 1166-1171.
[22] 杨波波. 多弧离子镀技术制备TiN基纳米复合多层膜及其性能研究[D]. 济南: 山东大学, 2019.
[23] 王淑庆. 物理气相沉积CrN和AlCrN薄膜的摩擦学性能[D]. 北京: 中国地质大学(北京), 2017.
[1] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[2] ZHONG Li, SHEN Li-ru, CHEN Mei-yan, LIU Tong, DAN Min, JIN Fan-ya. Study on Tribological Properties of (Ti, Cr) N Films [J]. VACUUM, 2020, 57(2): 27-32.
[3] LI Hao, WANG Dong-wei, ZHANG Chuan, LIU Chan, HUANG Mei-dong. Study on corrosion-resistance of Cr/CrN multilayers by arc ion plating [J]. VACUUM, 2019, 56(3): 21-26.
[4] ZHONG Zhao-jin, CAO Xin, GAO Qiang, HAN Na, CUI Jie-dong, SHI Li-fen, YAO Ting-ting, MA Li-yun, PENG Shou. Effect of RF sputtering power on properties of AZO thin films deposited at room temperature [J]. VACUUM, 2019, 56(1): 45-48.
[5] ZHAO Yan-hui, SHI Wen-bo, LIU Zhong-hai, LIU Zhan-qi, YU Bao-hai. Effect of deposition process parameters on arc ion plating [J]. VACUUM, 2018, 55(6): 49-59.
[6] YAO Ting-ting, ZHONG Zhao-jin, LI Gang, TANG Yong-kang, YANG Yong, JIN Ke-wu, SHENG Hong-xue, WANG Tian-qi, PENG Saiao, JIN Liang-mao, SHEN Hong-lie, GAN Zhi-ping, MA Li-yun. Study on fabrication and properties of micro-nano structure AZO films by DC coupled RF sputtering [J]. VACUUM, 2018, 55(6): 64-67.
[7] DUAN Yong-li, Deng Wen-yu, QI Li-jun, LIU Kun, SUN Bao-yu, WANG Qing. Influence of Tb grain boundary diffusion on the magnetic performance and heat resistance of sintered NdFeB magnet [J]. VACUUM, 2018, 55(6): 76-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Jie, KANG Song, DONG Chang-kun. Study on Working Performance for Low Pressure Carbon Nanotube Micro Sensor[J]. VACUUM, 2021, 58(1): 1 -5 .
[2] LI Fu-song, WANG Wen-jun, LIN Wei-jian, PAN Ya-juan. Design of Intelligent Screw Air Compressor Performance Testing System[J]. VACUUM, 2021, 58(1): 19 -22 .
[3] YANG Nai-heng. Analysis and Discussion on the Vacuum Pump for Vacuum Degassing[J]. VACUUM, 2021, 58(1): 29 -32 .
[4] WANG Xun. Vacuum Measurement and Application for Aerospace[J]. VACUUM, 2021, 58(1): 15 -18 .
[5] ZHANG Shi-wei, SUN Kun, HAN Feng. Discussion on Several Common Problems in Screw Vacuum Pump Design[J]. VACUUM, 2021, 58(1): 23 -28 .
[6] . [J]. VACUUM, 2020, 57(6): 84 -86 .
[7] CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source[J]. VACUUM, 2021, 58(1): 6 -9 .
[8] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation[J]. VACUUM, 2021, 58(1): 10 -14 .
[9] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M[J]. VACUUM, 2021, 58(1): 33 -37 .
[10] ZHANG Yu-chen, ZHANG Hai-bao, CHEN Qiang. Review on Semi-Conductive ZnO Thin Film Prepared by HiPIMS[J]. VACUUM, 2021, 58(1): 72 -77 .