欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (4): 22-27.doi: 10.13385/j.cnki.vacuum.2022.04.05

• Vacuum Acquisition System • Previous Articles     Next Articles

Vacuum System for CSNS II Ion Source and LEBT

LIU Shun-ming1,2, SONG Hong1,2, WANG Peng-cheng1,2, LIU Jia-ming1,2, GUAN Yu-hui1,2, TAN Biao1,2, SUN Xiao-yang1,2, CHEN Wei-dong1,2, LIU Sheng-jin1,2, OUYANG Hua-fu1,2   

  1. 1. Spallation Neutron Source Science Center, Dongguan 523808, China;
    2. Institute of High Energy Physics, Chinese Academy of Sciences(CAS), Beijing 100049, China
  • Received:2021-12-27 Online:2022-07-25 Published:2022-08-09

Abstract: The beam power of the CSNS II accelerator will be upgraded from 100kW to 500kW, which requires the average beam power of the linear accelerator to be increased from the current 5kW to 25kW, and the pulse beam intensity to be increased from 12.5mA to more than 40mA. For this reason, the Penning type surface negative hydrogen ion source currently in use will be replaced by a radio frequency(RF) negative hydrogen ion source. Considering that the beam cutting ratio of the beam chopper ranges from 35% to 50%, and the LEBT transmission rate can reach 75% to 95%, the RF negative hydrogen ion source needs to produce a negative hydrogen ion beam of at least 50mA. Therefore, the hydrogen gas consumption of the ion source needs to be increased from the current 10sccm to more than 20sccm,and the pressure of LEBT second chamber is required to be ≤5.0×10-3Pa. Based on this, the ion source and the LEBT vacuum system are modified in this paper,and the beam transmission rate of LEBT is improved. In addition, the pumping speed of hydrogen with two domestic and imported magnetic levitation molecular pumps is compared,which provides a certain reference for the selection of molecular pumps and localized substitution.

Key words: RF-driven H- ion source, LEBT vacuum system, modification of turbo molecular pumping system, hydrogen pumping speed

CLC Number: 

  • TB75
[1] 韦杰. 中国散裂中子源简介[J]. 现代物理知识, 2007, 19(6): 22-29.
[2] 陈和生. 中国散裂中子源[J]. 现代物理知识, 2016, 28(1): 3-10.
[3] FU S N, CHEN H S, CHEN Y B, et al.CSNS project construction[J]. Journal of Physics: Conference Series, 2018, 1021(1): 012002.
[4] 谭彪, 黄涛, 王鹏程, 等. 中国散裂中子源RCS真空系统[J]. 真空, 2021, 58(3): 1-6.
[5] 刘盛进, 欧阳华甫, 黄涛, 等. CSNS强流负氢离子源及其改进[J]. 原子能科学技术, 2019, 53(9): 1719-1723.
[6] CHEN W, LI H, ZHU R L, et al.Operation of RF-driven negative hydrogen ion source in China Spallation Neutron Source[J]. Review of Scientific Instruments, 2019, 90(11): 113320.
[7] CHENG D W.SNS front-end systems vacuum systems[R]. San Francisco: Lawrence Berkeley National Laboratory-University of California, 2001: 1-6.
[8] LADD P, CRANDALL J, HECHLER M, et al.Overview of the spallation neutron source vacuum systems[J]. Journal of Vacuum Science & Technology A, 2005, 23(4): 1270-1275.
[9] INST J.Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC[R]. Tokyo: Japan Atomic Energy Research Institute, 2003.
[10] BENNETT J.A vacuum system for the ess accelerator[C]// Proceedings of EPAC 2002, Paris, 2002.
[11] VALERIO-LIZARRAGA C A, LEON-MONZON I, SCRIVENS R. Negative ion beam space charge compensation by residual gas[J]. Physical Review Special Topics-Accelerators and Beams, 2015, 18(8): 080101.
[12] DONG H, SONG H, LI Q, et al.The vacuum system of the China spallation neutron source[J]. Vacuum, 2018, 154: 75-81.
[13] 刘顺明, 关玉慧, 黄涛, 等. CSNS直线加速器真空系统及四极质谱检漏[J]. 真空与低温, 2019, 25(5): 348-354.
[14] 郭宁, 邱家稳, 江豪成. 分子泵对Xe气抽速的测试[J]. 真空, 2007(2): 15-17.
[15] 达道安. 真空设计手册: 第3版[M]. 北京: 国防工业出版社, 2004: 118-119.
[16] 王欲知, 陈旭. 真空技术:第2版[M]. 北京: 北京航空航天大学出版社, 2007: 228-233.
[17] KERSEVAN R. Analytical and numerical tools for vacuum systems[C]//CAS2006, Spain: CERN, 2006(3): 285-312.
[18] HASEGAWA K.Status of the J-PARC linac[C]//Proceedings of Particle Accelerator Society Meeting, Ibaraki: JAEA, 2009.
[19] BÖHNERT M. Oil-free pump stations for pumping of the superconducting cavities of the TESLA test facility[C]// The 10th Workshop on RF Superconductivity, Tsukuba, Japan, 2001: 477-480.
[20] 卢耀文, 董云宁, 闫睿, 等. 一种基于CF400接口分子泵抽速测试装置[J]. 真空科学与技术学报, 2020, 40(5): 416-420.
[1] LI Bo, HOU De-feng, WANG Xiao-dong, BA De-chun. Influence of Turbine Stage Parameters of Composite Molecular Pump on the Performance of Helium Mass Spectrometer Leak Detector [J]. VACUUM, 2022, 59(4): 1-7.
[2] ZHANG Hai-feng, SUN Li-chen, WANG Li, LIU En-jun, SHI Ji-jun, SUN Li-zhi. Research on Leak Detection Technology for Manned Spacecraft Hatch [J]. VACUUM, 2022, 59(4): 8-11.
[3] LIU Ming-kun, LI Dan-tong, XING Zi-wen. Research Progress of the Inner Compression Rotor Structure of Twin-Screw Vacuum Pumps [J]. VACUUM, 2022, 59(4): 28-32.
[4] ZHAO Xi-hao, ZHAO Li-zhuang, WANG Jun, LI Xue-qin, CUI Feng, WANG Zeng-li, GENG Mao-fei. Design and Analysis of New Sinusoidal Helical Screw Rotor for Twin-Screw Vacuum Pump [J]. VACUUM, 2022, 59(3): 1-6.
[5] WANG Peng-cheng, SUN Xiao-yang, JING Han-tao, HUANG Tao, LIU Jia-ming, LIU Shun-ming, TAN Biao. The Vacuum System of Back-n at CSNS [J]. VACUUM, 2022, 59(3): 7-11.
[6] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[7] ZHOU Yuan, RAN Ao, WU Yi-heng, XIE Yuan-hua, LIU Kun. Design and Analysis of High Vacuum Chamber for MEMS Ion Source Testing Based on ANSYS [J]. VACUUM, 2022, 59(3): 16-19.
[8] HU Rong-xing, ZHANG Heng, YU Qing-zhou, SHU Xiao-dong, GAN Shu-yi. Development of Virtual Vacuum Acquisition Device Performance Test System Based on Unity3D Platform [J]. VACUUM, 2022, 59(3): 20-24.
[9] LI Zhuo-hui, LU Tong-shan, LIU Jia-lin, SUN Song-gang, DONG Dong, SHI Cheng-tian, LI Can-lun, ZHANG Rui. Approximate Calculation Method of Decompression Time in Rapid Decompression Environment Simulation System [J]. VACUUM, 2022, 59(3): 25-28.
[10] SUN Cheng-kai, LIU Hai-jing, LU Tong-shan, LI Can-lun, LI Zhuo-hui, GAO Ze-tian, WANG Guo-fang. Application Research of High Precision Gradient Temperature Control System [J]. VACUUM, 2022, 59(2): 17-20.
[11] LIAO Ze-yu, MAO Shi-feng, ZHAO Chang-lian, YE Min-you. DSMC Simulation Study on the Pumping Performance of Linear Mercury Diffusion Pump for Exhaust Gas of Fusion Reactor [J]. VACUUM, 2022, 59(2): 26-31.
[12] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[13] LI Bo, HOU De-feng, WANG Xiao-dong, BA De-chun. Influence of the Position of Molecular Pump Medium Detection Port on the Performance of Helium Mass Spectrometer Leak Detector [J]. VACUUM, 2021, 58(6): 1-7.
[14] LIU Hai-jing, LI Can-lun, LU Tong-shan, SUN Cheng-kai, LI Zhuo-hui, QI Song-song, LIU Jia-lin. Development and Analysis of Large-diameter and Ultra-long U-shaped Gas Pool [J]. VACUUM, 2021, 58(6): 55-58.
[15] XUE Qing-zeng, CHEN Jiu-qiang, FENG Jun-xiao, TENG Long, LI Xiu-zhang, LI Hong-lei. Application Status and Prospect of Isolation Valve in Vacuum Induction Metallurgy Equipment [J]. VACUUM, 2021, 58(6): 59-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!