欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (4): 33-40.doi: 10.13385/j.cnki.vacuum.2022.04.07

• Vacuum Acquisition System • Previous Articles     Next Articles

Research Progress of NS/DSMC Coupling Calculation Method in the Transitional Flow of Rarefied Gas

LIU Wan-suo, YUE Xiang-ji, LIN Zeng   

  1. School of Mechanical Engineering and Automation, Northeast University, Shenyang 110819, China
  • Received:2021-09-13 Online:2022-07-25 Published:2022-08-09

Abstract: The transition flow is solved by the joint calculation of NS and DSMC methods. The NS/DSMC coupling method has the advantages of the computational efficiency of NS method and the computational accuracy of DSMC method.In this paper, the principle of key technologies in the development of coupling method is introduced in detail, the application progress of coupling method in spatial plume research is discussed, and the shortcomings of computational domain partition method are explained. Then the application of coupling technology in the flow around neighbor spacecraft is analyzed. It is proposed that the error between the coupling calculation and the experimental results may be caused by DSMC statistical scattering, which can be eliminated by cumulative statistics. In addition, the application of NS/DSMC coupling method using two-phase flow model in MEMS field is also discussed. Finally, the application of coupling method in vacuum field and the research direction of coupling algorithm in the future are prospected.

Key words: NS/DSMC coupling calculation, transition flow, vacuum, plume, near space

CLC Number: 

  • O356
[1] BIRD G A.Molecular gas dynamics and the direct simulation of gas flows[M]. New York: Oxford University Press, 1994.
[2] BIRD G A.Molecular gas dynamics[J]. NASA STI/Recon Technical Report A, 1976, 76: 40225.
[3] O'CONNELL S T, THOMPSON P A. Molecular dynamics-continuum hybrid computations: a tool for studying complex fluid flows[J]. Physical Review E, 1995, 52(6): 5792-5797.
[4] DIETRICH S, BOYD I D.Scalar and parallel optimized implementation of the direct simulation Monte Carlo method[J]. Journal of Computational Physics, 1996, 126(2): 328-342.
[5] SCHWARTZENTRUBER T E, BOYD I D.A hybrid particle-continuum method applied to shock waves[J]. Journal of Computational Physics, 2006, 215(2): 402-416.
[6] JOHN B, DAMODARAN M.Hybrid continuum-direct simulation Monte Carlo and particle-laden flow modeling in the head-disk interface gap[J]. IEEE Transactions On Magnetics, 2009, 45(11): 4929-4932.
[7] FARBER K, FARBER P, GRABEL J, et al.Development and validation of a coupled Navier-Stokes/DSMC simulation for rarefied gas flow in the production process for OLEDs[J]. Applied Mathematics and Computation, 2016, 272: 648-656.
[8] KOLOBOV V I, BAYYUK S A, ARSLANBEKOV R R, et al.Construction of a unified continuum/kinetic solver for aerodynamic problems[J]. Journal of Spacecraft and Rockets, 2005, 42(4): 598-606.
[9] KOLOBOV V, ARSLANBEKOV R, ARISTOV V, et al.Unified flow solver for aerospace applications[C]//44th AIAA Aerospace Sciences Meeting and Exhibit, 2006: 988.
[10] FLEKKOY E G, WAGNER G, FEDER J.Hybrid model for combined particle and continuum dynamics[J]. EPL(Europhysics Letters), 2000, 52(3): 271-276.
[11] HADJICONSTANTINOU N G, PATERA A T.Heterogeneous atomistic-continuum representations for dense fluid systems[J]. International Journal of Modern Physics C, 1997, 8(4): 967-976.
[12] HADJICONSTANTINOU N G.Hybrid atomistic-continuum formulations and the moving contact-line problem[J]. Journal of Computational Physics, 1999, 154(2): 245-265.
[13] TSIEN H S.Superaerodynamics,mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12): 653-664.
[14] WAGNER W.A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation[J]. Journal of Statistical Physics, 1992, 66(3): 1011-1044.
[15] WADSWORTH D, ERWIN D A.One-dimensional hybrid continuum/particle simulation approach for rarefied hypersonic flows[C]//5th Joint Thermophysics and Heat Transfer Conference, 1990: 1690.
[16] WADSWORTH D, ERWIN D.Two-dimensional hybrid continuum/particle approach for rarefied flows[C]//23rd Plasmadynamics and Lasers Conference, 1992: 2975.
[17] BIRD G A.Breakdown of translational and rotational equilibrium in gaseous expansions[J]. AIAA Journal, 1970, 8(11): 1998-2003.
[18] LIAN Y Y, CHEN Y S, TSENG K C, et al.Improved parallelized hybrid DSMC-NS method[J]. Computers & Fluids, 2011, 45(1): 254-260.
[19] BOYD I D, CHEN G, GANDLER G V.Predicting failure of the continuum fluid equations in transitional hypersonic flows[J]. Physics of Fluids, 1995, 7(1): 210-219.
[20] WANG W L, BOYD I.Continuum breakdown in hypersonic viscous flows[C]//40th AIAA Aerospace Sciences Meeting & Exhibit, 2002: 651.
[21] GARCIA A L, BELL J B, CRUTCHFIELD W Y, et al.Adaptive mesh and algorithm refinement using direct simulation Monte Carlo[J]. Journal of Computational Physics, 1999, 154(1): 134-155.
[22] ROVEDA R, GOLDSTEIN D B, VARGHESE P L.Hybrid Euler/particle approach for continuum/rarefied flows[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 258-265.
[23] ROVEDA R, GOLDSTEIN D B, VARGHESE P L.Hybrid Euler/direct simulation Monte Carlo calculation of unsteady slit flow[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 753-760.
[24] 唐振宇, 蔡国飙. 两种用于NS-DSMC 耦合方法的连续失效参数对比[J]. 北京航空航天大学学报, 2014(3): 389-393.
[25] SCHWARTZENTRUBER T E, SCALABIN L C, BOYD I D.A modular particle-continuum numerical method for hypersonic non-equilibrium gas flows[J]. Journal of Computational Physics, 2007, 225(1): 1159-1174.
[26] WU J S, TSENG K C.Parallel DSMC method using dynamic domain decomposition[J]. International Journal for Numerical Methods in Engineering, 2005, 63(1): 37-76.
[27] QUARTERONI A M, VALLI A.Domain decomposition methods for partial differential equations[M]. New York: Oxford University Press, 1999.
[28] SUN Q, BOYD I D.Evaluation of macroscopic properties in the direct simulation Monte Carlo method[J]. Journal of Thermophysics and Heat Transfer, 2005, 19(3): 329-335.
[29] WANG W L, BOYD I D.Predicting continuum breakdown in hypersonic viscous flows[J]. Physics of Fluids, 2003, 15(1): 91-100.
[30] 李中华, 李志辉, 李海燕, 等. 过渡流区NS/DSMC 耦合计算研究[J]. 空气动力学学报, 2013, 31(3): 282-287.
[31] EGGERS J, BEYLICH A.New algorithms for application in the direct simulation Monte Carlo method[J]. Progress in Astronautics and Aeronautics, 1994, 159: 166-173.
[32] WU J S, LIAN Y Y.Parallel three-dimensional direct simulation Monte Carlo method and its applications[J]. Computers & Fluids, 2003, 32(8): 1133-1160.
[33] WU J S, TSENG K C, WU F Y.Parallel three-dimensional DSMC method using mesh refinement and variable time-step scheme[J]. Computer Physics Communications, 2004, 162(3): 166-187.
[34] WU J S, TSENG K C, LEE U M, et al.Development of a general parallel three-dimensional direct simulation Monte Carlo code[C]//AIP Conference Proceedings. American Institute of Physics, 2005, 762(1): 559-564.
[35] GARCIA A L, ALDER B J.Generation of the Chapman-Enskog distribution[J]. Journal of Computational Physics, 1998, 140(1): 66-70.
[36] AKTAS O, ALURU N R.A combined continuum/DSMC technique for multiscale analysis of microfluidic filters[J]. Journal of Computational Physics, 2002, 178(2): 342-372.
[37] WU J S, LIAN Y Y, CHENG G, et al.Development and verification of a coupled DSMC-NS scheme using unstructured mesh[J]. Journal of Computational Physics, 2006, 219(2): 579-607.
[38] 张欢迎, 贺碧蛟, 任翔. 姿轨控发动机及其羽流对太阳能帆板热影响分析[C]//中国航天第三专业信息网第四十届技术交流会暨第四届空天动力联合会议论文集:S02 液体推进及相关技术, 2019: 309-316.
[39] 陈杰, 贺碧蛟, 蔡国飙. 火星环绕器羽流效应仿真研究[J]. 载人航天, 2017, 23(6): 743-750.
[40] 邢卓异, 王彤, 舒燕, 等. 地外天体上航天器起飞瞬时羽流对主发动机干扰效应影响[J]. 航天器环境工程, 2020, 36(6): 565-570.
[41] 唐振宇, 贺碧蛟, 蔡国飙. 解耦NS/DSMC 方法计算推力器真空羽流的边界条件研究[J]. 推进技术, 2014(7): 897-904.
[42] 李志辉, 李中华, 杨东升, 等. 卫星姿控发动机混合物羽流场分区耦合计算研究[J]. 空气动力学学报, 2012, 30(4): 483-491.
[43] 包醒东, 余西龙, 毛宏霞, 等. 基于理论解析方法的高真空羽流流动及红外辐射研究[J]. 红外与激光工程, 2020, 49(1): 123-130.
[44] 李中华, 李志辉, 李海燕. Chapman-Enskog 非平衡分布在 NS/DSMC 耦合算法中应用研究[C]//第十六届全国流体力学数值方法研讨会2013论文集, 2013: 115-116.
[45] 李志辉, 梁杰, 李中华, 等. 跨流域空气动力学模拟方法与返回舱再入气动研究[J]. 空气动力学学报, 2018, 36(5): 826-847.
[46] 方方, 田园, 赵攀, 等. 空间返回航天器气动外形设计与需求分析[J]. 空气动力学学报, 2018, 36(5): 816-825.
[47] 张赛文, 张棚, 黄焜, 等. 基于N-S/DSMC耦合算法的微喷管真空羽流数值研究[C]//第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会论文集(第一册), 2020: 236-243.
[1] LIU Ming-kun, LI Dan-tong, XING Zi-wen. Research Progress of the Inner Compression Rotor Structure of Twin-Screw Vacuum Pumps [J]. VACUUM, 2022, 59(4): 28-32.
[2] LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27.
[3] XU Xin-yun, ZHU Wen-li, XIE Jin-ru, LIU Qiang, LI Xue-feng. A Method for Coating Transparent Aluminum Oxide Film on Vacuum Winding Evaporation Coating Machine [J]. VACUUM, 2022, 59(4): 48-51.
[4] WANG Yao-wu, DI Yue-zhong, YOU Jing, PENG Jian-ping. Development of Magnesium Production by Vacuum Aluminothermic Reduction under the Background of Carbon Emission Peak and Carbon Neutrality [J]. VACUUM, 2022, 59(4): 64-69.
[5] SONG Jing-si, ZUO Ye, YING Bing, LIU Jun, FENG Jun-xiao, TENG Long, LI Yuan-lu, ZHANG Zhe-kui. The Mainstream Structure and Future Development of Vacuum Induction Melting Furnace [J]. VACUUM, 2022, 59(4): 70-75.
[6] LIU Yan-wen, MENG Ming-feng, ZHANG Xiao-lin, ZHU Hong, WANG Guo-jian, ZHAO Heng-bang, WANG Xiao-xia, ZHANG Zhi-qiang. Preparation of Molten Heater Assembly [J]. VACUUM, 2022, 59(4): 76-79.
[7] ZHAO Xi-hao, ZHAO Li-zhuang, WANG Jun, LI Xue-qin, CUI Feng, WANG Zeng-li, GENG Mao-fei. Design and Analysis of New Sinusoidal Helical Screw Rotor for Twin-Screw Vacuum Pump [J]. VACUUM, 2022, 59(3): 1-6.
[8] WANG Peng-cheng, SUN Xiao-yang, JING Han-tao, HUANG Tao, LIU Jia-ming, LIU Shun-ming, TAN Biao. The Vacuum System of Back-n at CSNS [J]. VACUUM, 2022, 59(3): 7-11.
[9] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[10] ZHOU Yuan, RAN Ao, WU Yi-heng, XIE Yuan-hua, LIU Kun. Design and Analysis of High Vacuum Chamber for MEMS Ion Source Testing Based on ANSYS [J]. VACUUM, 2022, 59(3): 16-19.
[11] HU Rong-xing, ZHANG Heng, YU Qing-zhou, SHU Xiao-dong, GAN Shu-yi. Development of Virtual Vacuum Acquisition Device Performance Test System Based on Unity3D Platform [J]. VACUUM, 2022, 59(3): 20-24.
[12] WANG Qing, HOU Jing-yue, LI Hong. An Arc Stabilization Power Supply Used for Vacuum Arc Melting [J]. VACUUM, 2022, 59(2): 66-71.
[13] SUN Cheng-kai, LIU Hai-jing, LU Tong-shan, LI Can-lun, LI Zhuo-hui, GAO Ze-tian, WANG Guo-fang. Application Research of High Precision Gradient Temperature Control System [J]. VACUUM, 2022, 59(2): 17-20.
[14] HU Sheng, YU Jie, WANG Liang, LI Gang. The Optimization Study of the Trigger Structure of a Small Vacuum Arc Ion Source [J]. VACUUM, 2022, 59(2): 11-16.
[15] LUO Wei, LI Zhuo-hui, ZHOU Xiao-dong, WANG Xiao-zhan, SUN Cheng-kai, GUAN Yang, JIN Zhao-feng, LIU Hai-jing. Experimental Study on Thermal Connection Mode in Ultra-low Temperature Region [J]. VACUUM, 2022, 59(1): 64-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!