欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (2): 11-16.doi: 10.13385/j.cnki.vacuum.2022.02.03

• Measurement and Control • Previous Articles     Next Articles

The Optimization Study of the Trigger Structure of a Small Vacuum Arc Ion Source

HU Sheng, YU Jie, WANG Liang, LI Gang   

  1. 1. Hefei Institution of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    2. University of Science and Technology of China, Hefei 230026, China
  • Received:2021-05-10 Online:2022-03-25 Published:2022-04-14

Abstract: On the research of a small triggered vacuum arc ion source, the trigger process is very crucial to the following processes such as arcing and extraction. The traditional trigger structure is a sandwich structure including trigger, insulator and cathode. The triggering process is the surface discharge process on the insulator surface. It needs a very rigorous condition to realize stable triggering discharge for this structure. Optimizing the trigger structure can effectively improve the stability of the ion source and reduce the cost and ability of the power source. Therefore, we propose a new trigger structure in this paper, which also demonstrates the stability of triggering discharge.

Key words: surface flashover, triggered vacuum arc ion source, triggering discharge

CLC Number: 

  • O462.4
[1] 吕会议, 王韬, 杨振, 等. 基于新型金属氘化物电极的真空弧离子源性能研究[J]. 核技术, 2020, 43(6): 66-70.
[2] 任亮, 张天平, 吴先明, 等. 真空电弧推力器技术发展现状及趋势[J]. 真空与低温, 2016, 22(5): 265-270.
[3] AGAFONOV A V, TARAKANOV V P, KLADKO S G, et al.Dynamics of plasma and ion flux in a vacuum neutron tube[J]. High Temperature, 2017, 55(5): 672-677.
[4] WENZEL N, KOSSE S, LAWALL A, et al.Numerical simulation of multi-component arcs in high-current vacuum interrupters[C]// 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum(ISDEIV): IEEE, 2012.
[5] 丁剑飞, 吴先映, 李强, 等. 磁过滤阴极真空弧沉积法制备TiAlN薄膜的研究[J]. 真空, 2007(4): 24-28.
[6] ANDERS A.Metal plasma immersion ion implantation and deposition: a review[J]. Surf. Coat. Technol, 1997, 93(2-3): 158-167.
[7] GILMOUR A, LOCKWOOD D. Pulsed metallic-plasma generators[J]. Proceedings of the IEEE, 2005, 60(8): 977-991.
[8] WATT G C, EVANS P J.A trigger power supply for vacuum arc ion sources[J]. IEEE Transactions on Plasma Science, 1993, 21(5): 547-551.
[9] BERGERON K D.Theory of the secondary electron avalanche at electrically stressed insulator-vacuum interfaces[J]. Journal of Applied Physics, 1977, 48(7): 3073-3080.
[10] ANDERSON R A.Mechanism of pulsed surface flashover involving electron-stimulated desorption[J]. Journal of Applied Physics, 1980, 51(3): 1414-1421.
[11] 何俊佳, 邹积岩, 王海, 等. 触发真空开关初始离子体的产生和扩展[J]. 高压电器, 1996, 32(6): 3-5.
[12] 万翔, 杨林, 陈磊, 等. 触发型真空弧放电特性研究. 真空, 2014(2): 66-69.
[13] PILLAI, SIVATHANU A, HACKAM, et al. Surface flashover of solid insulators in atmospheric air and in vacuum[J]. Journal of Applied Physics, 1985, 58(1): 146-153.
[14] MILLER H C.Flashover of insulators in vacuum: Review of the phenomena and techniques to improve holdoff voltage[J]. IEEE Transactions on Electrical Insulation, 1993, 28(4): 512-527.
[15] MILLER H C.Surface flashover of insulators[J]. Electrical Insulation IEEE Transactions, 1989, 24(5): 765-786.
[16] 雷杨俊, 肖定全. 真空中陶瓷绝缘子的沿面闪络现象及其研究进展[J]. 功能材料, 2003(6): 25-27, 32.
[17] 徐琳, 王恒, 黄祯, 等. 基于COMSOL有限元法的电涡流传感器仿真[J]. 排灌机械工程学报, 2015, 33(12): 1097-1104.
[18] 李盛涛, 张拓, 黄奇峰, 等. Improvement of surface flashover performance of Al2O3 ceramics in vacuum by adopting A-B-A insulation system[J]. Plasma Science & Technology, 2011(2): 235-241.
[19] 杨津基. 气体放电[M]. 北京: 科学出版社, 1983.
[20] 万翔. 触发型真空弧离子源放电特性研究[D]. 中国工程物理研究院, 2014.
[21] 殷燕. 氧气、氮气及其混合气体直流放电的蒙特卡罗模拟[D]. 保定: 河北大学, 2003.
[1] ZHANG Xin-hui, LI Qing-xiao. Effect of Vacuum Heat Treatment on Structure and Photoelectric Properties of AZO Film [J]. VACUUM, 2021, 58(3): 45-50.
[2] HE Jian-feng, HUANG Wei-jun, DONG Chang-kun. A New Carbon Nanotube Field Emission Ionization Gauge With Coaxial Electrodes [J]. VACUUM, 2019, 56(6): 12-15.
[3] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[2] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[3] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[4] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .
[5] RAN Biao, LI Liu-he. The development and application of anode layer ion source[J]. VACUUM, 2018, 55(5): 51 -57 .
[6] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(6): 28 -32 .
[7] Wu Yue, E Dong-mei, Du Peng, Guo Zi-yin, Chen Shi-yu, Wang Jing. The leak detection method of the joint of spacecraft capsule[J]. VACUUM, 2018, 55(6): 1 -4 .
[8] YU Huan-qiang, ZHANG Jun-feng, DING Huai-kuang. Development of sub-cooled liquid nitrogen cooling system based on principle of decompression and cooling[J]. VACUUM, 2018, 55(6): 33 -36 .
[9] LUO Wei. Application and analysis of energy saving reform of condenser vacuum system[J]. VACUUM, 2018, 55(6): 37 -41 .
[10] GUO Chong-wu, SUN Li-chen, SUN Li-zhi, QI Fei-fei, LI Wen-bin. Mechanism research of double seal leakage in single-O-ring seal structure[J]. VACUUM, 2018, 55(6): 19 -23 .