VACUUM ›› 2022, Vol. 59 ›› Issue (4): 41-47.doi: 10.13385/j.cnki.vacuum.2022.04.08
• Thin Film • Previous Articles Next Articles
CHANG Zhen-dong1, ZHANG Jing2, MU Ren-de1,2, LIU De-lin1, XIN Wen-bin2, SONG Xi-wen2
CLC Number:
[1] | 赵鹏森, 曹新鹏, 郑海忠, 等. 稀土掺杂热障涂层的研究进展[J]. 航空材料学报, 2021, 41(4): 83-95. |
[2] | HEMKER K J, MENDIS B G, EBERL C. Characterizing the microstructure and mechanical behavior of a two-phase NiCoCrAlY bond coat for thermal barrier systems[J]. Materials Science and Engineering A, 2008, 483/484: 727-730. |
[3] | 刘林涛, 李争显, 王彦峰, 等. NiCrAlY(YSZ)多层复合涂层高温抗氧化行为研究[J]. 稀有金属材料与工程, 2019, 48(11): 3657-3663. |
[4] | 郭磊, 高远, 叶福兴, 等. 航空发动机热障涂层的CMAS腐蚀行为与防护方法[J]. 金属学报, 2021, 57(9): 1184-1198. |
[5] | GHADAMI F, AGHDAM A S R, GHADAMI S.Microstructural characteristics and oxidation behavior of the modified MCrAlX coatings: a critical review[J]. Vacuum, 2021, 185: 109980. |
[6] | 宋鹏, 陆建生, 黄太红, 等. 热障涂层中NiPtAl与MCrAlY粘结层表面氧化铝的生长差异研究[J]. 稀有金属材料与工程, 2014, 43(3): 601-604. |
[7] | JADHAV M, SINGH S, SRIVASTAVA M, et al.An investigation on high entropy alloy for bond coat application in thermal barrier coating system[J]. Journal of Alloys and Compounds, 2019, 783: 662-673. |
[8] | 李国君, 蔡杰, 高承钻, 等. 激光喷丸强化CoCrAlY防护涂层的抗高温氧化性能[J]. 稀有金属材料与工程, 2020, 49(6): 2132-2138. |
[9] | HSU W L, MURAKAMI H, YEH J W, et al.A heat-resistant NiCo0.6Fe0.2Cr1.5SiAlTi0.2 overlay coating for high-temperature applications[J]. Journal of The Electrochemical Society, 2016, 163: 752-758. |
[10] | KHAN A, SONG P, HUANG T H, et al.Diffusion characteristics and structural stability of Pt modified β- NiAl/γ′-Ni3Al within NiCoCrAl alloy at high temperature[J]. Applied Surface Science,2019,476: 1096-1107. |
[11] | CHEN Y, ZHAO X, DANG Y, et al.Characterization and understanding of residual stresses in a NiCoCrAlY bond coat for thermal barrier coating application[J]. Acta Materialia, 2015, 94: 1-14. |
[12] | CHEN Y, ZHAO X, BAI M, et al.A mechanistic understanding on rumpling of a NiCoCrAlY bond coat for thermal barrier coating applications[J]. Acta Materialia, 2017, 128: 31-42. |
[13] | WENG W X, WANG Y M, LIAO Y M, et al.Comparison of microstructural evolution and oxidation behaviour of NiCoCrAlY and CoNiCrAlY as bond coats used for thermal barrier coatings[J]. Surface & Coatings Technology, 2018, 352: 285-294. |
[14] | DAI P C, WU Q, MA Y, et al.The effect of silicon on the oxidation behavior of NiAlHf coating system[J]. Applied Surface Science, 2013, 271: 311-316. |
[15] | EBACH-STAHL A, SCHULZ U, SWAD′ZBA R, et al. Lifetime improvement of EB-PVD 7YSZ TBCs by doping of Hf or Zr in NiCoCrAlY bond coats[J]. Corrosion Science, 2021, 181: 109205. |
[16] | NAUMENKO D, PINT B A, QUADAKKERS W J.Current thoughts on reactive element effects in alumina-forming systems: in memory of John Stringer[J]. Oxidation of Metals, 2016, 86: 1-43. |
[17] | MORA-GARCÍA A G, RUIZ-LUNA H, MOSBACHER M, et al. Microstructural analysis of Ta-containing NiCoCrAlY bond coats deposited by HVOF on different Ni-based superalloys[J]. Surface and Coatings Technology, 2018, 354: 214-225. |
[18] | SOBOYEJO W O, MENSAH P, DIWAN R, et al.High temperature oxidation interfacial growth kinetics in YSZ thermal barrier coatings with bond coatings of NiCoCrAlY with 0.25% Hf[J]. Materials Science and Engineering A, 2011, 528: 2223-2230. |
[19] | VANDE PUT A, LAFONT M C, OQUAB D, et al.Effect of modification by Pt and manufacturing processes on the microstructure of two NiCoCrAlYTa bond coatings intended for thermal barrier system applications[J]. Surface & Coatings Technology, 2010, 205: 717-727. |
[20] | LIANG J J, WEI H, ZHU Y L, et al.Phase constituents and thermal expansion behavior of a NiCrAlYRe coating alloy[J]. Journal of Materials Science, 2011, 46: 500-508. |
[21] | SALAM S, HOU P Y, ZHANG Y D, et al.Compositional effects on the high-temperature oxidation lifetime of MCrAlY type coating alloys[J]. Corrosion Science, 2015, 95: 143-151. |
[22] | LI W, FU L B, LIU Y D, et al.The role of Re in effecting isothermal oxidation behavior of β-(Ni,Pt)Al coating on a Ni-based single crystal superalloy[J]. Corrosion Science, 2020, 176: 108892. |
[23] | 国防科学技术工业委员会. 钢及高温合金的抗氧化性测定试验方法: HB 5258-2000[S]. 北京: 中国标准出版社, 2000. |
[1] | ZHANG Hui, Wang Xiao-bo, ZHANG Wei-xin, GONG Chun-zhi, TIAN Xiu-bo. Effect of Substrate Bias Mode on Structure and Hydrogen Resistance of CrN Thin Films [J]. VACUUM, 2022, 59(1): 18-23. |
[2] | WU Zhong-ju, BAI Xiao, CHENG Yang-yang, ZHOU She-zhu. Preparation and Characterization of SiC Coating on Isostatic Pressing Formed Graphite Surface [J]. VACUUM, 2021, 58(5): 62-65. |
[3] | BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20. |
[4] | TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10. |
|