欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (4): 12-20.doi: 10.13385/j.cnki.vacuum.2021.04.03

• Thin Film • Previous Articles     Next Articles

Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings

BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua   

  1. AECC Beijing Institute of Aeronautical Materials, Aviation Key Laboratory of Science and Technology on advanced Corrosion and Protection for Aviation Material, Beijing 100095, China
  • Received:2020-12-28 Online:2021-07-25 Published:2021-08-05

Abstract: The four LZ, LZ3Y, LZ7C3 and YSZ thermal barrier coatings (TBCs)were fabricated via electron beam physical vapor deposition (EB-PVD). The high temperature phase stability, interficial bonding strength and cyclic oxidation behavior of three types of rare earth zirconates and YSZ TBCs were investigated. The phase constituent, phase structural stability, morphology and chemical composition of the four TBCs were systematically analyzed by XRD, SEM and EDS. The results indicate that the diffraction peaks belonging to the LZ, LZ3Y and LZ7C3 coating powders, which gradually shift to the larger 2θ-value after long-term thermal exposure at 1300℃. The excessive phases including of La2O3, t-ZrO2 and CeO2 coexisted in the ceramic coatings also have produced the solid solution phenomenon. The YSZ coating appears two monoclinic diffraction peaks and the intensities of these two peaks slightly increase to a certain extent. After 336h in room temperature air, the LZ coating exhibits lamellar delamination. The averaged interfacial bonding strength of YSZ coating is the highest, while that of LZ coating is the lowest. Meanwhile, the thermal cycling lives of three rare earth zirconates TBCs are lower than that of YSZ coating. It is proably related to the excess of La2O3 contained in the three new TBCs. La2O3 is easy to chemically react with H2O or CO2 in air, which further leads to volume expansion, weakens the inferfacial adhesion between the ceramic coat and bond coat and decreases the thermal cycling lifetime of the coaings.

Key words: rare earth zirconate, thermal barrier coatings, phase structure, bonding strength, thermal cycling lifetime

CLC Number: 

  • TG17
[1] 孙健, 刘书彬, 李伟, 等. 电子束物理气相沉积制备热障涂层研究进展[J]. 装备环境工程, 2019, 16(1): 1-6.
[2] ZHANG X F, ZHOU K S, LIU M, et al.CMAS corrosionand thermal cycle of Al-modified PS-PVD environmental barrier coating[J]. Ceram.Int., 2018, 44(13): 15959-15964.
[3] ZHANG X F, ZHOU K S, LIU M, et al.Mechanisms governing the thermal shock and tensile fracture of PS-PVD 7YSZ TBC[J]. Ceram.Int., 2018, 44(4): 3973-3980.
[4] SALDANA J M, SCHULZA U, RODRIGUZA G G M, et al. Microstructure and lifetime of Hf or Zr doped sputtered NiAlCr bond coat/7YSZ EB-PVD TBC systems[J]. Surf.Coat.Technol., 2018, 335: 41-51.
[5] CAO XQ.Application of Rare earths in thermal barrier coating materials[J]. J.Mater.Sci.Thchnol., 2007, 23(1): 15-35.
[6] 周雳, 邢志国, 王海斗, 等. 等离子喷涂金属/陶瓷梯度热障涂层研究进展[J].表面技术, 2020, 49(1): 122-131.
[7] SHEN Z YHE L M, XU Z H, et al. LZC/YSZ DCL TBCs by EB-PVD: microstructure, low thermal conductivityand high thermal cycling life[J]. J.Eur.Ceram.Soc., 2019, 39(4): 1443-1450.
[8] CAO XQ, VASSEN R, STÖVER D. Ceramic materials for thermal barrier coatings[J]. J.Eur.Ceram.Soc., 2004, 24(1): 1-10.
[9] 薛召露, 郭洪波, 宫声凯, 等. 新型热障涂层陶瓷隔热层材料[J]. 航空材料学报, 2018, 38(2): 10-20.
[10] SHEN Z YHE L M, XU Z H, et al. LZC/YSZ double layer coatings: EB-PVD,microstructure and thermal cyclinglife[J]. Surf.Coat.Technol., 2019, 367(15): 86-90.
[11] ZHANG H, YUAN J Y, SONG W J, et al.Composition, mechanical properties and thermal cycling performance of YSZ toughened La2Ce2O7 composite thermal barrier coatings[J]. Ceram.Int., 2020, 46(5): 6641-6651.
[12] WANG Y J, MA X X, MA R, et al.Influence of amorphous phase in LaMgAl11O19 properties of LaMgAl11O19/YSZ thermal barrier coatings[J]. Ceram.Int., 2020, 45(7): 6537-6546.
[13] XU ZH, HE LM, ZHAO Y, et al.Composition, structure evolution and cyclic oxidation behavior of La2(Zr0.7Ce0.3)2O7 EB-PVD TBCs[J]. J.Alloys.Compd., 2010, 491(1-2): 729-736.
[14] LI M H, SUN X F, GONG S K, et al.Phase transformation and bond coat oxidation behavior of EB-PVD thermal barrier coating[J]. Surf.Coat.Technol., 2004, 176(2): 209-214.
[15] SCHULZ U, NOWOTNIK A, KUNKEL S, et al.Effect of processing and interface on the durability of single and bilayer7YSZ/gadolinium zirconate EB-PVD thermal barrier coatings[J]. Surf.Coat.Technol., 2020, 381: 125107-125117.
[16] 闫洪, 窦明民, 李和平. 二氧化锆陶瓷的相变增韧机理和应用[J]. 陶瓷学报, 2000, 21(1): 46-50.
[17] BRANDON J R, TAYLOR R.Phase stability of zirconia-based thermal barrier coatings partI: Zirconia-yttria alloys[J]. Surf.Coat.Technol., 1991, 46(1): 75-90.
[18] SARUHAN B, FRANCOIS P, FRITSCHER K, et al.EB-PVD processing of pyrochlore-structured La2Zr2O7-based TBCs[J].Surf.Coat.Technol., 2004, 182(2-3): 175-183.
[19] SARUHAN B, FRITSCHER K, SCHULZ U.Y-doped La2Zr2O7 pyrochlore EB-PVD thermal barrier coatings[J]. Ceram.Eng.Sci.Proc., 2003, 24: 491-496.
[20] BOISSONNET G, CHALK G, NICHOLLS J R, et al.Phase stability and thermal insulation of YSZ and erbia-yttria co-dopedzirconia EB-PVD thermal barrier coating systems[J]. Surf.Coat.Technol., 2020, 389: 125566-125573.
[21] XU Z H, HE L M, CHEN X L, et al.Thermal cycling behavior of La2Zr2O7 coating with the addition of Y2O3 by EB-PVD[J]. J.Alloys.Compd., 2010, 508: 85-93.
[22] JESURAJ S A, KUPPUSAMI P, DHARINI T, et al.Effect of substrate temperature on microstructure and nanomechanical properties of Gd2Zr2O7 coatings prepared by EB-PVD technique[J].Ceram.Int., 2018, 44(15): 18164-18172.
[23] JUNG Y C, SASAKI T, TOMIMATSU T, et al.Distribution and structures of nanoporesin YSZ-TBC deposited by EB-PVD[J]. Sci.Technol.Adv.Mater., 2003, 4(6): 571-574.
[24] GUO X Y, LI L, PARK H M, et al.Mechanical properties of layered La2Zr2O7 thermal barrier coatings[J]. J.Therm.Spray.Tech., 2018, 27: 581-590.
[25] FROMMHERZ M, SCHOLZ A, OECHSNER M, et al.Gadolinium zirconate/YSZ thermal barrier coatings: Mixed-modeinterfacial fracture toughness and sintering behavior[J]. Surf.Coat.Technol., 2016, 286: 119-128.
[1] ZHONG Li, DAN Min, SHEN Li-ru, JIN Fan-ya, CHEN Mei-yan, LIU Tong, DENG Zhi. Effect of Hall Source Sputtering Cleaning Process on Bonding Properties of Ion Plating TiN Coatings [J]. VACUUM, 2020, 57(6): 5-6.
[2] FENG Shen-shen, WANG Liang, LI Bin, YU Qing-zhou, GAN Shu-yi. Research Progress of Corrosion-Resistant and Conductive Films on Stainless Steel Substrate Prepared by Magnetron Sputtering [J]. VACUUM, 2020, 57(6): 11-17.
[3] ZHONG Li, SHEN Li-ru, CHEN Mei-yan, LIU Tong, DAN Min, JIN Fan-ya. Study on Tribological Properties of (Ti, Cr) N Films [J]. VACUUM, 2020, 57(2): 27-32.
[4] FANG Bo, ZHANG Lin, CAI Fei, ZHANG Shi-hong. Study on Wear Properties of Duplex-Treated CrVN Composite Coatings by Plasma Nitriding and Arc Ion Plating [J]. VACUUM, 2020, 57(2): 33-39.
[5] LIU Ling-yun, LIN Song-sheng, WANG Di, LI Feng, DAI Ming-jiang, SHI Qian, WEI Chun-bei. Study on Preparation and Properties of CrAlN Anti-erosion Coating [J]. VACUUM, 2020, 57(2): 40-46.
[6] ZHANG Ying-wei, LI Xiao-dan, GAO Zheng-yu, NI Jia-qiang, LIU Yan-mei, LI Jian-zhong. Research of Electrolytic Polishing on Selective Laser Melting TC4 Alloy in Perchloric Acid Media [J]. VACUUM, 2020, 57(2): 78-82.
[7] LI Xiang, LAI You-bin, YANG Bo, WANG Dong-yang, SUN Ming-han, WU Hai-long,YUAN Ren-yue, SUN Shi-jie. Application Status and Prospect of Cladding Technology on Soil-engaging Components of Agricultural Machinery [J]. VACUUM, 2020, 57(1): 83-87.
[8] WU Zhong-can, LIU Liang-liang, TANG Wei; YANG Chao, MA Zheng-yong. Fabrication and Properties of Robust Superhydrophobic F-DLC Coatings [J]. VACUUM, 2019, 56(6): 30-35.
[9] WANG Di, LIN Song-sheng, LIU Ling-yun, YANG Hong-zhi, JIANG Bai-ling, XUE Yu-na, ZHOU Ke-song. Research Progress of Surface Treatment Technology on Fatigue Properties of Titanium Alloy [J]. VACUUM, 2019, 56(6): 36-42.
[10] WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84.
[11] LI Guo-hao, BA De-chun, WANG Dong, CHEN Hong-bin, ZHANG Hong-qi, DU Guang-yu. Research on Thermal Shock Performance of YSZ Coatings Deposited by EB-PVD [J]. VACUUM, 2020, 57(3): 1-4.
[12] WANG Xin, XU Zhen-hua, PENG Chao, DAI Jian-wei, HE Li-min, MU Ren-de. High Temperature Protection Properties of Pt Modified Aluminide Coating on the Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 11-16.
[13] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .