欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (4): 56-63.doi: 10.13385/j.cnki.vacuum.2022.04.11

• Thin Film • Previous Articles     Next Articles

Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy

WANG Li-zhe1,2, CAI Yan1,2, ZHNG Ru-jing1,2, HE Li-min1,2, MU Ren-de1,2   

  1. 1. Beijing Institute of Aeronautical Materials, Beijing 100095, China;
    2. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, Beijing 100095, China
  • Online:2022-07-25 Published:2022-08-09

Abstract: Aluminide coating was deposited on the nickel-based single crystal superalloy DD5 by chemical vapor deposition(CVD), then NiCoCrAlYHf(HY5) metal bond coat was deposited in situ by vacuum arc ion plating(ARC), and yttria-stabilized zirconia(6~8YSZ) was deposited by electron beam physical vapor deposition(EB-PVD). The isothermal oxidation protection performance of DD5+(HY5+YSZ) and DD5+(Al+HY5+YSZ) samples at 1100℃ was compared. X-ray diffraction, scanning electron microscope and electron probe methods were used to analyze the evolution of microstructure and composition of the two coatings during high temperature oxidation. The results show that DD5+(Al+HY5+YSZ) coating has a dense multi-layer structure and combines well with the substrate. After isothermal oxidation for 250h, the appearance of the two coatings both keep intact. During the isothermal oxidation process at 1100℃ for 250h, the oxidation rate constants of DD5 alloy, DD5+(HY5+YSZ) coating, and DD5+(Al+HY5+YSZ) coating are 0.415, 0.410, 0.354g2·m4·h-1, respectively. After isothermal oxidation for 250h, the highest Al contents in DD5+(HY5+YSZ) and DD5+(Al+HY5+YSZ) coatings are 5.8wt% and 16.7wt% respectively, which is in good accordance with Al content on the bond coat upper surface of 3.7wt% and 6.0wt%, and the thicknesses of thermal grown oxide(TGO) are 6.6μm and 9.4μm respectively. Element interdiffusion occurs between two coatings and the substrate,leading to the appearance of secondary reaction zone(SRZ). The SRZ in the DD5+(Al+HY5+YSZ) coating is more obvious and continuous than that in DD5+(HY5+YSZ).

Key words: CVD, aluminide coating, thermal barrier coating, EB-PVD, isothermal oxidation

CLC Number: 

  • TG174.4
[1] WU S, ZHAO Y, LI W, et al.Research progresses on ceramic materials of thermal barrier coatings on gas turbine[J]. Coatings, 2021, 11(1): 79.
[2] KUMAR V, KANDASUBRAMANIAN B.Processing and design methodologies for advanced and novel thermal barrier coatings for engineering applications[J]. Particuology, 2016, 27: 1-28.
[3] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722-2731
[4] LEYENS C, PINT B A, WRIGHT I G. Effect of composition on the oxidation and hot corrosionresistance of NiAl doped with precious metals[J]. Surface and Coatings Technology, 2000, 133/134: 15-22.
[5] 郑蕾, 郭洪波, 郭磊, 等. 新一代超高温热障涂层研究[J]. 航空材料学报, 2012, 32(6): 14-24.
[6] YU Z, DHARMASENA K P, HASS D D, et a1. Vapor deposition of platinum alloyed nickel aluminide coatings[J]. Surface and Coatings Technology, 2006, 201(6): 2326-2334.
[7] 马岳, 段祝平, 席军, 等. 热障涂展高温氧化性能研究的现状与发展[J]. 表面技术, 2002, 31(2): 1-4.
[8] SHILLINGTON E A G, CLARKE D R. Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat[J]. Acta Materialia, 1999, 47(4): 1297-1305.
[9] OKADA M, HISAMATSU T, KITAMURA T.Temperature estimation and Al content prediction focusing on microstructural change in a thermal barrier coating[J]. Journal of Thermal Spray Technology, 2009, 18(1): 90-95.
[10] 顿易章, 吴勇, 张磊. CVD法在镍基高温合金表面制备改性铝化物涂层的研究进展[J]. 金属热处理, 2018, 43(3): 145-151.
[11] 郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[M]. 中国材料进展 2009 28(9): 18-26.
[12] LI D Q, GUO H B, WANG D, et a1. Cyclic oxidation of β-NiAl with various reactive element dopants at 1200℃[J]. Corrosion Science, 2013, 66: 125-135.
[13] RUSSELL N V, WIGLEY F, WILLAMSON J.Microstructural changes to metal bond coatings on gas turbine alloys with time at high temperatures[J]. Journal of Material Science, 2000, 35: 2131-2138.
[14] XU Z H, MU R D, HE L M, et al.Effect of diffusion barrier on the high-temperature oxidation behavior of thermal barrier coatings[J]. Journal of Alloys and Compounds, 2008, 466: 471-478.
[15] 蔡妍, 陆峰, 陶春虎, 等. 电弧离子镀Al 扩散障结构及抗高温氧化性能研究[J]. 航空材料学报, 2010, 30(1): 57-61.
[16] TOLPYGO V K, CLARKE D R, MURPHY K S. Evaluation of interface degradation during cyc1ic oxidation of EB-PVD thermal barrier coatings and correlation with TGO luminescence[J]. Surface & Coatings Technology, 2004, 188/189: 62-70.
[17] 蔡妍, 李建平, 何利民, 等. NiCoCrAlYHf涂层材料的1200℃高温氧化行为[J]. 真空, 2017, 54(6): 12-16.
[18] SUZUKI A S, KAWAGISHI K, YOKOKAWA T, et a1. Effect of Cr on micro structural evolution of aluminized fourth generation Ni-base single crystal superalloys[J]. Surface & Coatings Technology, 2012, 206(11/12): 2769-2773.
[19] LIU C T, MA J, SUN X F.Mechanism of the oxidation and degradation of the aluminide coating on the nickel-base single-crystal superalloy DD32M[J]. Surface and Coatings Technology, 2010, 204: 3641-3646.
[20] KASAI K, MURAKAMI H, NODA K.Effect of thermal history on microstructural changes in aluminizednickel- based single-crystal superalloy[J]. Journal of the Japan Institute of Metals, 2012, 76(6): 402-406.
[21] WU W T, RAHMEL A, SCHORR M. Acidic and basic fluxing of Ni-base superalloys in a 90Na2SO4-10K2SO4 melt at1173 K[J]. Oxidation of Metals, 1983(19): 201-229.
[22] WU W, RABMEL A, SCHORR M.Role of platinum in the Na2SO4-included hot corrosion resistance of aluminum diffusion coatings[J]. Oxidation of Metals, 1984, 22: 59-81.
[23] 刘刚, 牛焱, 王文, 等. IN738合金上铂铝涂层的高温氧化[J]. 中国腐蚀与防护学报, 2001, 21(1): 54-63.
[24] WANG X, CHEN M, ZHU S, et al.Oxidation behavior of glass-based composite thermal barrier coating on K417G superalloy with a NiCoCrAlY bond coat at 1000℃[J]. Surface & Coatings Technology, 2015, 270: 314-323.
[25] 张鹏飞, 李建平, 蔡妍, 等. DZ125合金真空电弧镀沉积复合涂层技术[J]. 航空材料学报, 2020, 40(2): 22-27.
[1] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[2] BAI Ming-yuan, WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Phase Stability and Interfacial Bonding Strength of Rare Earth Zirconate Novel Thermal Barrier Coatings [J]. VACUUM, 2021, 58(4): 12-20.
[3] LIU Lu-sheng, ZHAI Zhao-feng, YANG Bing, SONG Hao-zhe, YU Qi, SHI Dan, YUAN Zi-yao, LU Zhi-gang, CHEN Bin, ZHOU Mei-qi, LI Hai-ning, YU Biao, HUANG Nan, JIANG Xin. Development of Hot Filament Chemical Vapor Deposition Equipment for Continuous Diamond Film Preparation [J]. VACUUM, 2020, 57(6): 1-4.
[4] LI Guo-hao, BA De-chun, WANG Dong, CHEN Hong-bin, ZHANG Hong-qi, DU Guang-yu. Research on Thermal Shock Performance of YSZ Coatings Deposited by EB-PVD [J]. VACUUM, 2020, 57(3): 1-4.
[5] WANG Xin, XU Zhen-hua, PENG Chao, DAI Jian-wei, HE Li-min, MU Ren-de. High Temperature Protection Properties of Pt Modified Aluminide Coating on the Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 11-16.
[6] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[7] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[8] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD [J]. VACUUM, 2018, 55(5): 46-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!