欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 50-54.doi: 10.13385/j.cnki.vacuum.2022.05.09

• Vacuum Acquisition System • Previous Articles     Next Articles

Development of XHV System for Customized Vacuum Exhaust Process for Space TWTs

LU Shao-bo, YAO Zheng, SONG Yan-peng, HAN Yong-chao, ZHANG Ji-feng, TANG Rong   

  1. Beijing Vacuum Electronic Technology Co., Ltd., Beijing 100015, China
  • Received:2021-12-17 Online:2022-09-25 Published:2022-09-28

Abstract: Space TWTs are widely used in communication satellite, radar satellite, positioning and navigation and other fields. The acquisition and maintenance of extra high vacuum is the key to the high reliability and long life of space TWTs. The extra high vacuum(XHV) of TWTs needs to be obtained on special vacuum exhaust equipment. Vacuum exhaust system is the most important process in the manufacturing process of micro-wave vacuum electronic devices. The acquisition and maintenance of XHV involves a variety of vacuum related technologies, including the choice of materials, the optimized design of vacuum chamber, vacuum pump selection, acquisition and measurement of extra high vacuum, vacuum degassing technology, high sensitive vacuum leak detection and residual gas analysis technology. This paper introduces the development process of space TWTs extra high vacuum system equipment and its application in scientific research and production. The vacuum system realizes that the no-load vacuum degree is better than 1×10-9Pa, and the multi-channel load vacuum degree is better than 5×10-9Pa, which has a certain reference value for the acquisition of ultrahigh vacuum and extra high vacuum, and the manufacturing process and application of vacuum exhaust equipment.

Key words: XHV, space TWTs, vacuum exhaust, outgassing rate

CLC Number: 

  • TB751
[1] 张思安, 王翠莲, 朱露. Ku波段大功率脉冲行波管可靠性设计[C]//2016真空电子学分会第二十届学术年会论文集(上). 厦门: 中国电子学会, 2016.
[2] 张勇, 何小琦, 宋芳芳. 行波管可靠性研究探讨[J]. 电子质量, 2008(6): 65-69.
[3] 张勇. 行波管电子枪抗振可靠性模拟评估技术[D]. 广东: 广东工业大学, 2008.
[4] 沈悦, 闫冠齐. BVERI空间行波管发展和应用概述[J]. 真空电子技术, 2017(4): 12-15.
[5] 董笑瑜, 梁田, 范亚松. 四极质谱仪在微波真空电子器件中的应用[J]. 真空电子技术, 2018(6): 61-65,69.
[6] 欧阳勤. 空间行波管[J]. 真空电子技术, 2003(2): 29-32.
[7] 王涛. 行波管可靠性测试系统的研制和周期永磁聚焦系统的数值仿真[D]. 南京: 东南大学, 2008.
[8] 赵世柯, 王严梅. 高可靠空间行波管产品工艺保障问题的思考[J]. 真空电子技术, 2017(1): 6-10.
[9] 廖复疆. 真空电子技术[M]. 北京: 国防工业出版社, 1999.
[10] 李莉莉. 含钪扩散阴极的研究[D]. 北京: 北京工业大学, 2010.
[11] 李得天, 成永军, 冯焱, 等. 超高/极高真空测量发展综述[J]. 真空科学与技术学报, 2009, 29(5): 522-530.
[12] 成永军, 李得天. 极高真空技术的发展[J]. 宇航计测技术, 2009(5): 71-76.
[13] 郭方准. 适用真空技术[M]. 大连: 大连理工大学出版社, 2012.
[14] BENVENUTI C, 翁国屏, 姜万顺, 等. 极高真空的获得和测量[J]. 真空, 1980(12): 45-51.
[15] 张以忱. 第十一讲:真空材料[J]. 真空, 2002(1): 48-52.
[16] 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2006.
[17] 卢少波, 张吉峰. 多功能超高真空高频除气系统的研制[J]. 真空电子技术, 2011(4): 66-68.
[18] 张延宾, 郑侠, 尹中荣. 超高真空热处理炉的研制[J]. 真空, 2017, 54(4): 9-12.
[19] 李利军. 聚酯生产过程中的真空设备[J]. 聚酯工业, 2001, 14(2): 4-7,16.
[20] 徐成海. 真空工程技术[M]. 北京: 国防工业出版社, 2006: 870.
[21] 成永军, 李得天, 张涤新, 等. 极高真空校准室内残余气体的成分分析[J]. 真空科学与技术学报, 2010, 30(1): 54-59.
[22] 单睿, 齐通通, 黎秉哲, 等. 非蒸散型薄膜吸气剂的研究现状及应用进展[J]. 功能材料, 2018, 49(5): 5049-5055.
[23] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2006: 1331.
[24] 刘燕文, 孟宪展, 田宏, 等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
[25] 李芬, 王国建, 田宏, 等. 微波真空电子器件用无氧铜材料的蒸发特性[J]. 电子与信息学报, 2021, 43(9): 2751-2756.
[26] 刘晋允, 赵世柯, 梁晓峰, 等. 质谱仪在空间行波管生产中的超灵敏度检漏应用[J]. 真空与低温, 2021, 27(3): 214-217.
[27] CHEN X, HUANG T B, WANG L G, et al.Ultrasensitive leak detection during ultrahigh vacuum evacuation by quadrupole mass spectrometer[J]. Journal of Vacuum Science & Technology A: Vacuum Surfaces & Films, 2006, 24(1): 91-94.
[1] HUANG Fan, LI Bin, LIU Yi-qun, CAO Hui. Influence of Paper Barcode on Helium Leak Detection Output of the Fuel Rod and Solution [J]. VACUUM, 2021, 58(5): 89-92.
[2] LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .