欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 51-54.doi: 10.13385/j.cnki.vacuum.2023.03.08

• Vacuum Acquisition System • Previous Articles     Next Articles

Design and Optimization of Dust Removal System for Mechanical Vacuum Pump

DU Shan-guo, LI Bo, LI Qiang, XU You-min   

  1. Capital Engineering & Research Incorporation Limited, Beijing 100176, China
  • Received:2022-05-27 Online:2023-05-25 Published:2023-05-30

Abstract: Mechanical vacuum pump system has gradually replaced the steam vacuum pump system in the field of steel refining, and a reasonable and efficient dust removal system is a necessary measure to ensure the normal operation of the mechanical vacuum pump system. This paper introduces the design and working principle of mechanical vacuum pump dust removal system, and analyzes the common problems and causes of dust removal system. Combined with the relevant engineering practical experience, the dust removal system is optimized and improved, including two-stage gas cooling system, automatic pulse purge system, automatic dust transferring system, and waste gas monitoring and alarm system. The optimized and improved dust removal system has been continuously operated in the RH vacuum refining furnace project of a new electric furnace steel-making plant for more than one year, effectively protecting the operation of mechanical vacuum pump and meeting the production process requirements for RH vacuum refining furnace.

Key words: mechanical vacuum pump, dust removal system, vacuum refining, gas cooler, bag dust removal filter

CLC Number:  TF769.4

[1] 张鉴. 炉外精炼的理论与实践[M]. 北京: 冶金工业出版社, 1999.
[2] 赵沛. 炉外精炼及铁水预处理使用技术手册[M]. 北京: 冶金工业出版社, 2002.
[3] TEEUWSEN A.机械真空泵系统用于钢水的真空二次精炼[C]//第十八届(2014年)全国炼钢学术会议论文集. 西安: 中国金属学会炼钢分会, 2014.
[4] LI B.Research for development of RH and VD vacuum refining equipment[C]//Proceedings of 2018 China Symposium on Sustainable Steelmaking Technology(CSST2018), 2018: 317-320.
[5] TEEUWSEN A.Vacuum oxygen decarburization(VOD)of stainless steel: optimization of the process with mechanical vacuum pumps[J]. Vakuum in Forschung und Praxis, 2014, 26(3): 32-37.
[6] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2004.
[7] 徐成海, 巴德纯, 于溥, 等. 真空工程技术[M]. 北京: 化学工业出版社, 2006.
[8] 杨雄飞. 机械真空泵在钢水精炼工艺中的应用[N]. 世界金属导报, 2012-02-07.
[9] 李小敏. 旋风除尘器的结构设计[J]. 现代制造技术与装备, 2021, 57(6): 86-88.
[10] 吴建龙, 赵腾, 马正锋, 等. 炼钢用低碳绿色机械真空泵系统研发与应用[J]. 重型机械, 2022(2): 20-26.
[11] 张虎, 赵腾, 吴建龙, 等. RH机械真空泵系统主抽气管道的设计研究与应用[J]. 重型机械, 2020(3): 65-68.
[12] 葛本伍, 王宝, 谭永彦, 等. 机械式真空脱气炉除尘系统应用研究与改进[J]. 设备管理与维修, 2019(1): 91-92.
[13] CHU J H, BAO Y P.Mn evaporation and denitrification behaviors of molten Mn steel in the vacuum refining with slag process[J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(8): 1288-1297.
[14] ZHANG F M. Research and practice on BF gas dry type dedusting technology at contemporary blast furnace[J]. Advanced Materials Research, 2012, 610-613: 2134-2137.
[15] 杜善国, 李博, 李强, 等. 一种真空精炼废气处理系统: CN216498313U[P].2022-05-13.
[16] 邓茂忠, 刘德钦. 外滤式布袋脉冲除尘脉冲反吹控制系统的改进探讨[J]. 冶金动力, 2002(2): 63-64.
[17] 蒋琼. 氮气低压脉冲外滤式布袋除尘的设计与应用[J]. 冶金能源, 2007, 26(3): 10-12.
[18] 李小强. 布袋除尘器设计选型中的几个关键影响因素[J]. 四川有色金属, 2022(1): 44-47.
[19] 张翔, 徐硕. 干式除尘器的粉尘爆炸风险及安全对策[J]. 设备管理与维修, 2020(7): 161-162.
[20] 刘勃兴. 气力输灰技术在钢铁企业的应用实践[J]. 天津冶金, 2021(6): 68-71.
[21] KIRSCHEN M, VELIKORODOV V, PFEIFER H.Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces[J]. Energy, 2006, 31(14): 2926-2939.
[1] LIU Meng, WU Jian-long, ZHAO Teng, ZHU Lang-tao, CAO Hai-ling, ZHANG Ming, MA Zheng-feng, ZHANG Mi, FU Deng-feng. Research and Application of Remote Fault Diagnosis System for Mechanical Vacuum Pump [J]. VACUUM, 2021, 58(2): 48-51.
[2] ZHAO Teng, ZHANG Hu, LIU Xiang, WU Jian-long, ZHANG Mi, ZHOU Rong-ping. Leak Rate Test and Intelligent Detection of Mechanical Vacuum Pump System for RH Refining Furnace [J]. VACUUM, 2020, 57(4): 28-31.
[3] JIANG Xie-chang. Vacuum Pumps for Chemical Process Industries [J]. VACUUM, 2020, 57(2): 1-7.
[4] YANG Hua-fei, YIN Shan-shan, LUO Gen-song, LIANG Yi-heng. Research and exploration on energy saving technology of mechanical vacuum pump [J]. VACUUM, 2019, 56(2): 37-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .