欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (6): 45-47.doi: 10.13385/j.cnki.vacuum.2020.06.10

• Vacuum Metallurgy • Previous Articles     Next Articles

Effect of Electron Beam Melting Process on Surface Quality of Ta Ingot

MA Jing1, LI Jiao2, GONG Xiao-tao1, GENG Pei1, ZHOU Chao1   

  1. 1.Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China;
    2.Xi'an Noble Rare Metal Materials Co., Ltd., Xi'an 710201, China;
  • Received:2020-03-25 Online:2020-11-25 Published:2020-11-30

Abstract: In this paper, the effect of electron beam smelting process on the surface quality of Ø100 Ta ingot is studied through experiment of adjusting the melting power at a fixed melting rate. The experiments results show that, when the melting speed is constant, the melting power is reduced, and the specific electrical energy is reduced, the surface of Ta ingots is prone to defects such as cold insulation and pinching. The melting power is too high, and the temperature of the molten pool is too high, resulting in overheating and overmelting. The microstructure is unfavorable and even produces severe metal tumor scars. When the vacuum of the electron beam melting furnace is 2×10-2Pa, the melting speed is 30 kg/h, the melting power is 160kW, and the cooling time is 4h, which is beneficial to the diffusion and volatilization of impurity elements.

Key words: high pure Ta, electron beam melting process, melting power, surface quality of ingot

CLC Number: 

  • TB742
[1] 闫洪. 真空扫描电子束提纯新技术[J]. 真空, 2000(3): 47-49.
[2] Veronica L, Camero M K, George T, Ramon M M, Benjamin M M, Bineh G N.Additively manufactured tantalum microstructures[J]. Material, 2018(1): 15-24.
[3] Levin Z S, Wang X X, Kaynak M, et al.Strength and ductility of powder consolidated ultra fine-grain tantalum[J]. International Journal of Refractory Metals and Materials, 2018, 80(4): 73-84.
[4] 胡忠武, 李中奎, 张廷杰, 等. 钽及钽合金的新发展和应用[J]. 稀有金属与硬质合金, 2003, 31(3): 34-36.
[5] 郭青蔚, 王肇信. 现代铌钽冶金[M]. 北京: 冶金工业出版社, 2009.
[6] 琚印超, 刘小勇, 王琴, 等. 难熔金属研究进展及在航天领域的应用情况[C]. 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 2017: 2-9.
[7] Browning P N, Alagic S, Caroll B, et al.Room and ultrahigh temperature mechanical properties of field assisted sintered tantalum alloys[J]. Material Science Engineering. A, 2017, 68(8): 141-151.
[8] 郑金凤, 杨国起, 罗文. 高纯钽溅射靶材制备工艺进展[J]. 湖南属有色金属, 2016, 32(4), 55-80.
[9] 徐潇敏, 刘宁, 刘爱军, 等. 钽及钽合金的制备方法和力学性能研究[J]. 热处理. 2019, 34(1): 6-10.
[10] 聂川, 杨洪帅, 牟鑫. 真空感应熔炼技术的发展及趋势[J]. 真空, 2015, 52(5): 52-57.
[11] 稀有金属手册编辑委员会. 稀有金属手册(Ⅱ)[M]. 北京: 冶金工业出版社, 1995.
[12] 刘多利, 赵永庆, 田广民, 等. 难熔金属材料先进制备技术[J]. 中国材料进展, 2015, 34(2): 164-167.
[13] FAN H, LIU S, DENG C, et al.Quantitative analysis: How annealing temperature influences recrystallization texture and grain shape in tantalum[J]. International Journal of Refractory Metals&Hard Materials, 2018, 72(8): 244-252.
[14] WANG S, CHEN C, JIA Y L, et al.Evolution of deformation microstructures of cold-rolled Ta-2. 5W alloy with coarse grains at low to medicine strains[J]. International Journal of Refractory Metals &Hard Materials, 2016, 54: 104-115.
[15] 谢强, 刘华, 廖强, 等. 熔炼工艺对TA10铸锭中镍元素的影响[J]. 湖南有色金属, 2019, 35(4): 43-45.
[16] 林小辉, 李来平, 李斌, 等. 热等静压在稀有难熔金属产品制备中的应用[J]. 粉末冶金工业, 2017, 27(3): 63-67.
[17] 肖颖, 严宝. 熔炼工艺对锆合金铸锭的影响[J]. 有色金属加工, 2017, 46(1): 15-16.
[1] WU Xing, JIANG Ai-hua, CHENG Yong. Effect of RF Power on Structure and Mechanical Properties of DLC Films [J]. VACUUM, 2019, 56(4): 34-36.
[2] WANG Huai-qian, JIANG Hong-wei. TiN Nano-Thin Films Prepared by Magnetron Sputtering Reaction [J]. VACUUM, 2019, 56(4): 37-39.
[3] ZHANG Qing-fang, YI Yong, LUO Jiang-shan. Effect of Sputtering Power on Microstructure of Er Thin Films Deposited by Magnetron Sputtering [J]. VACUUM, 2020, 57(3): 17-20.
[4] WEI Xian-lu, GONG Chen-yang, XIAO Jian-rong. Structure and Optical Properties of MoS2 Thin Films Prepared by RF Reactive Magnetron Sputtering [J]. VACUUM, 2020, 57(5): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!