VACUUM ›› 2023, Vol. 60 ›› Issue (5): 13-16.doi: 10.13385/j.cnki.vacuum.2023.05.02
• Vacuum Technology Application • Previous Articles Next Articles
ZHANG Zhe, LI Jian-chang
CLC Number: TB43;TN305.8
[1] WANG X, ZHANG H, YU R, et al.Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Advanced Materials, 2015, 27(14): 2324-2331. [2] ILAMI M, BAGHERI H, AHMED R, et al.Materials, actuators, and sensors for soft bioinspired robots[J]. Advanced Materials, 2021, 33(19): 2003139. [3] CHORTOS A, LIU J, BAO Z.Pursuing prosthetic electronic skin[J]. Nature Materials, 2016, 15(9): 937-950. [4] LAI Y C, YE B W, LU C F, et al.Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses, a tactile-induced insulating-to-conducting transition[J]. Advanced Functional Materials, 2016, 26(8): 1286-1295. [5] MU J, HOU C, WANG G, et al.An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors[J]. Advanced Materials, 2016, 28(43): 9491-9497. [6] CHU Y, ZHONG J, LIU H, et al.Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system[J]. Advanced Functional Materials, 2018, 28(40): 1803413. [7] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering pressure sensor active layers for improved performance[J]. Advanced Functional Materials, 2020, 30(39): 2003491. [8] QIU J, GUO X, CHU R, et al.Rapid-response,low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40716-40725. [9] ZHAO T, LI T, CHEN L, et al.Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29466-29473. [10] PAYNE M E, ZAMARAYEVA A, PISTER V I, et al.Printed, flexible lactate sensors: design considerations before performing on-body measurements[J]. Scientific Reports, 2019, 9: 13720. [11] WANG G, LIU T, SUN X C, et al.Flexible pressure sensor based on PVDF nanofiber[J]. Sensors and Actuators A: Physical, 2018, 280: 319-325. [12] ZHAN Z, LIN R, TRAN V T, et al.Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin[J]. ACS Applied Materials & Interfaces, 2017, 9(43): 37921-37928. [13] WU R, MA L, HOU C, et al.Silk composite electronic textile sensor for high space precision 2d combo temperature-pressure sensing[J]. Small, 2019, 15(31): 1901558. [14] HUANG Y, FAN X, CHEN S C, et al.Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 2019, 29(12): 1808509. [15] PAN C, DONG L, ZHU G, et al.High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array[J]. Nature Photonics, 2013, 7(9): 752-758. [16] WAN Y, WANG Y, GUO C F.Recent progresses on flexible tactile sensors[J]. Materials Today Physics, 2017, 1: 61-73. [17] CAYKARA T, SANDE M G, AZOIA N, et al.Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces[J]. Medical Microbiology and Immunology, 2020, 209(3): 363-372. [18] YANG C, SUO Z.Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. [19] YOU I, KONG M, JEONG U.Block copolymer elastomers for stretchable electronics[J]. Accounts of Chemical Research, 2019, 52(1): 63-72. [20] WANG S, XU J, WANG W, et al.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88. [21] LI X P, LI Y, LI X, et al.Highly sensitive,reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62. [22] YANG Z, PANG Y, HAN X L, et al.Graphene textile strain sensor with negative resistance variation for human motion detection[J]. ACS Nano, 2018, 12(9): 9134-9141. [23] JEON Y P, PARK J H, KIM T W.Highly flexible triboelectric nanogenerators fabricated utilizing active layers with a ZnO nanostructure on polyethylene naphthalate substrates[J]. Applied Surface Science, 2019, 466: 210-214. [24] DICKEY M D.Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 2017, 29(27): 1606425. [25] GUISEPPI-ELIE A.Electroconductive hydrogels: synthesis, characterization and biomedical applications[J]. Biomaterials, 2010, 31(10): 2701-2716. [26] WANG X, ZHANG Y, ZHANG X, et al.A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[J]. Advanced Materials, 2018, 30(12): 1706738. [27] YEO W H, KIM Y S, LEE J, et al.Multifunctional epidermal electronics printed directly onto the skin[J]. Advanced Materials, 2013, 25(20): 2773-2778. [28] KIM H J, SIM K, THUKRAL A, et al.Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors[J]. Science Advances, 2017, 3(9): 1701114. [29] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27: 1509-1522. [30] WU Z, YANG S, WU W.Shape control of inorganic nanoparticles from solution[J]. Nanoscale, 2016, 8(3): 1237-1259. [31] YAMAN M, KHUDIYEV T, OZGUR E, et al.Arrays of indefinitely long uniform nanowires and nanotubes[J]. Nature Materials, 2011, 10(9): 494-501. [32] LI H, DING G, YANG Z.A high sensitive flexible pressure sensor designed by silver nanowires embedded in polyimide(AgNW-PI)[J]. Micromachines(Basel), 2019, 10(3): 206. [33] SUMIO L J, TOSHINARI I.Single-shell carbon nanoutubes of 1-nm diameter[J]. Nature, 1993, 363: 603-605. [34] SAJID M I, JAMSHAID U, JAMSHAID T, et al.Carbon nanotubes from synthesis to in vivo biomedical applications[J]. International Journal of Pharmaceutics, 2016, 501(1/2): 278-299. [35] JIANG Z, NAYEEM M O G, FUKUDA K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement[J]. Advanced Materials, 2019, 31(37): 1903446. [36] ALLEN J M, TUNG V C, KANER R B.Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145. [37] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200. [38] ZHU Y, MURALI S, CAI W, et al.Graphene and graphene oxide: synthesis, properties,and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. [39] BLAKE P, HILL E W, CASTRO NETO A H, et al. Making graphene visible[J]. Applied Physics Letters, 2007, 91(6): 63124. [40] DEOKAR G, AVILA J, RAZADO-COLAMBO I, et al.Towards high quality CVD graphene growth and transfer[J]. Carbon, 2015, 89: 82-92. [41] CHEN W, YAN L, BANGAL P R.Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4): 1146-1152. [42] WANG L, WU B, JIANG L, et al.Growth and etching of monolayer hexagonal boron nitride[J]. Advanced Materials, 2015, 27(33): 4858-4864. [43] KURAPATI R, KOSTARELOS K, PRATO M, et al.Biomedical uses for 2d materials beyond graphene: current advances and challenges ahead[J]. Advanced Materials, 2016, 29(4): 6052-6074. [44] LUKATSKAYA M R, MASHTALIR O, REN C E, et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505. [45] ANASORI B, LUKATSKAYA M R, GOGOTSI Y.2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098. [46] SINHA A, DHANJAI, ZHAO H, et al.MXene: an emerging material for sensing and biosensing[J]. Trends in Analytical Chemistry, 2018, 105: 424-435. [47] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al.25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005. [48] 陈冠荣. 化工百科全书: 第9卷[M]. 北京: 化学工业出版社, 1996. [49] SHUAI X, ZHU P, ZENG W, et al.Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26314-26324. [50] ZHANG Y, HU Y, ZHU P, et al.Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35968-35976. [51] CHOONG C L, SHIM M B, LEE B S, et al.Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014, 26(21): 3451-3458. [52] LI H, WU K, XU Z, et al.Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20826-20834. [53] LUO Z, CHEN J, ZHU Z, et al.High-resolution and high-sensitivity flexible capacitive pressure sensors enhanced by a transferable electrode array and a micropillar-PVDF film[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7635-7649. [54] HU H, WANG D, TIAN H M, et al.Bioinspired hierarchical structures for contact-sensible adhesives[J]. Advanced Functional Materials, 2022, 32(8): 2109076. [55] CHENG L, QIAN W, WEI L, et al.A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions[J]. Journal of Materials Chemistry C, 2020, 8(33): 11525-11531. [56] PANG C, LEE G Y, KIM T I, et al.A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012, 11(9): 795-801. [57] FAN F R, LIN L, ZHU G, et al.Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6): 3109-3114. [58] ZHU B, LING Y, YAP L W, et al.Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29014-29021. [59] CHENG W, WANG J, MA Z, et al.Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode[J]. IEEE Electron Device Letters, 2018, 39(2): 288-291. [60] CHO Y, KIM G, CHO Y, et al.Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays[J]. Advanced Materials, 2015, 27(47): 7788-7793. [61] CHO Y, MINSKY H K, JIANG Y, et al.Shear adhesion of tapered nanopillar arrays[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11391-11397. [62] NIU H, GAO S, YUE W, et al.Highly morphology- controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure[J]. Small, 2020, 16(4): 1904774. [63] GUO Y, GAO S, YUE W, et al.Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48594-48603. [64] CHEN W, GUI X, LIANG B, et al.Structural engineering for high sensitivity,ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24111-24117. [65] WAN Y, QIU Z, HONG Y, et al.A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586. [66] WEI Y, CHEN S, LIN Y, et al.Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure[J]. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602. [67] QIU Z, WAN Y, ZHOU W, et al.Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343. [68] SHI J, WANG L, DAI Z, et al.Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small, 2018, 14(27): 1800819. [69] ZHOU Q, JI B, WEI Y, et al.A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range[J]. Journal of Materials Chemistry A, 2019, 7(48): 27334-27346. [70] JI B, ZHOU Q, HU B, et al.Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range[J]. Advance Materials, 2021, 33(27): 2100859. [71] PARK J, KIM J, HONG J, et al.Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins[J]. NPG Asia Materials, 2018, 10: 163-176. [72] ZHANG X, HU Y, GU H, et al.A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(9): 1900367. [73] HA M, LIM S, PARK J, et al.Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins[J]. Advanced Functional Materials, 2015, 25(19): 2841-2849. [74] YANG J, LUO S, ZHOU X, et al.Flexible,tunable,and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006. [75] ZHAO Z, LI Q, DONG Y, et al.A wearable sensor based on gold nanowires/textile and its integrated smart glove for motion monitoring and gesture expression[J]. Energy Technology, 2021, 9(7): 2100166. [76] MA C, XU D, HUANG Y C, et al.Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks[J]. ACS Nano, 2020, 14(10): 12866-12876. [77] MANNSFEL S C, TEE B C, STOLTENBERG R M, et al.Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864. [78] BAE G Y, HAN J T, LEE G, et al.Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity[J]. Advanced Materials, 2018, 30(43): 1803388. [79] LEE Y, PARK J, CHO S, et al.Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range[J]. ACS Nano, 2018, 12(4): 4045-4054. [80] LEE Y, MYOUNG J, CHO S, et al.Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano, 2021, 15(1): 1795-1804. [81] XIONG Y, SHEN Y, TIAN L, et al.A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436. [82] KIM H, KIM G, KIM T, et al.Transparent, flexible, conformal capacitive pressure sensors with nanoparticles[J]. Small, 2018, 14(8): 1703432. [83] PANG Y, ZHANG K, YANG Z, et al.Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS Nano, 2018, 12(3): 2346-2354. [84] YU Z, CAI G, TONG P, et al.Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay[J]. ACS Sensors, 2019, 4(9): 2272-2276. [85] NIE P, WANG R, XU X, et al.High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14911-14919. [86] LI T, LUO H, QIN L, et al.Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small, 2016, 12(36): 5042-5048. [87] YANG J C, MUN J, KWON S Y, et al.Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics,and prosthetics[J]. Advanced Materials, 2019, 31(48): 1904765. |
[1] | QIN Li-li, DONG Mao-jin, FENG Yu-dong, HAN Xian-hu, CAI Yu-hong, WANG Yi, LI Xiao-jin, MA Feng-ying. Recent Research Progress of Ultra High Vapor and Oxygen Barrier Film [J]. VACUUM, 2023, 60(1): 23-29. |
[2] | LI Jian-peng, ZHANG Chi, LI Jian-chang. Latest Studies on Fatigue Failure of Flexible Electronic Devices [J]. VACUUM, 2021, 58(5): 11-15. |
|