VACUUM ›› 2021, Vol. 58 ›› Issue (5): 11-15.doi: 10.13385/j.cnki.vacuum.2021.05.02
• Vacuum Technology Application • Previous Articles Next Articles
LI Jian-peng, ZHANG Chi, LI Jian-chang
CLC Number:
[1] GUSTAFSSON G, CAO Y, KLAVETTER F, et al.Flexible light-emitting diodes made from soluble conducting polymers[J]. Natrue, 1992, 357(6378): 477-479. [2] BOWEN N, BRITTAIN S, EVANS A G, et al.Spontaneous formation of ordered structures in thin films of materials supported on an elastomeric polymer[J]. Nature, 1998, 393(6681): 146-149. [3] CRONE B, DODABALAPUR A, LIN Y Y, et al.Large-scale complementary integrated circuits based on organic transistors[J]. Nature, 2000, 403(6769): 521-523. [4] GARNIER F, YASSAR A, SRIVASLTAVA P, et al.All-polymer field-effect transistor realized by printing techniques[J]. Science, 1994, 265(5179): 1684-1686. [5] 李学通, 仝洪月, 赵越, 等. 柔性电子器件的应用、结构、力学及展望[J]. 力学与实践, 2015, 37(3): 295-301. [6] LI M, WANG Y, ZHANG Y, et al.Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperatureand stress sensitivity for electronic skin[J]. Journal of Materials Chemistry, 2018, 6(22): 5877-5887. [7] JASON N N, SHEN W, CHENG W.Copper nanowires as conductive ink for low-cost draw-on electronics[J]. Acs Applied Materials & Interfaces, 2015, 7(30): 167600-16766. [8] LIANG J, WANG T, QIU P et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices[J]. Energy & Environmental Science, 2019, 12(10): 2983-2990. [9] LI R, JIAO J B.The effects of temperature and aging on Young's moduli of polymeric based flexible substrates[J]. International Symposium on Microelectronics, 2000, 4399: 68-73. [10] LIN M, CHEN Q, WANG Z, et al.Flexible polymer device based on Parylene-C with memory and temperature sensing functionalities[J]. Polymers, 2017, 9(8): 310. [11] TIAN F, ZHANG L, ZHANG J.Space charge and dielectric behavior of epoxy composite with SiO2- Al2O3 nano-micro fillers at varied temperatures[J]. Composites Part B-Engineering, 2017, 114: 93-100. [12] 范泽莹. 基于硫化相薄膜的柔性可转移阻变存储器工作机理探究[D]. 长春: 东北师范大学, 2018. [13] WANG Z B, HELANDER M G, QIU J, et al.Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011, 5(12): 753-737. [14] HU W, NIU X, LI L, et al.Intrinsically stretchable transparent electrodes based on silver-nanowire crosslinked -polyacrylate composites[J]. Nanotechnology, 2012, 23(34): 344002. [15] YU Z, NIU X, LIU Z, et al.Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes[J]. Advanced Materials, 2011, 23(24): 3989. [16] LI L, LIANG J, CHOU S Y, et al.A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes[J]. Science Reports, 2014, 4: 4307. [17] HAN T H, LEE Y, CHOI M R, et al.Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nature Photonics, 2012, 6(2); 105-110. [18] 贾静. LED照明及显示用柔性远程荧光薄膜的制备与性能研究[D]. 太原: 太原理工大学, 2017. [19] KIM S, KWON H J, LEE S, et al.Low-power flexible organic light-emitting diode display device[J]. Advanced materials, 2011, 23(31): 3511. [20] BANDODKAR A J, YOU J M, KIM N H, et al.Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat[J]. Energy&Environmental Science, 2017, 10(7): 1581-1589. [21] THORSEN T, WEAVER I, HOLIHAN E, et al.Flexible glucose sensors and fuel cells for bioelectronic implants[C]. International Midwest Symposium on Circuits and Systems, 2017: 619-622. [22] KANG Y S, PARK T, JANG S, et al.Repetitive bending test of membrane electrode assembly for bendable polymer electrolyte membrane fuel cell[J]. Journal of industrial and engineering chemistry, 2017, 47: 323-328. [23] NING F D, HE X D, SHEN Y B, et al.Flexible and lightweight fuel cell with high specific power density[J]. Acs Nano, 2017, 11(6): 5982-5991. [24] TOMINAKA S, NISHIZEKO H, MIZUNO J, et al.Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate[J]. Energy & Environment Science, 2009, 2(10): 1074. [25] WEINMUELLER C, TAUSTSCHNIG G, HOTZ N, et al.A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film[J]. Journal of Power Sources, 2010, 195(12): 3849-3857. [26] BRANDAO L, RODRIGUES J, MADEIRA L, et al.Methanol crossover reduction by nafion modification with palladium composite nanoparticles: Application to direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2010, 32(20): 11561-11567. [27] XU C, FAGHRI A, LI X, er al. Methanol and water crossover in a passive liquid-feed direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1769-1777. [28] GUO Z, FAGHRI A.Vapor feed direct methanol fuel cells with passive thermal-fluids management system[J]. Journal of Power Source, 2007, 162(2): 378-390. [29] 吴超群, 王威强. 超声喷雾对直接甲醇燃料电池的性能影响研究[J]. 电源技术, 2019, 43(11): 1828-1831. [30] WU Z L, KUANG X L, LIU L T, et al.A flexible foldable tubular mPDMFC for powering wearable devices[J]. Journal of Microelectromechanical Systems, 2017, 26Z: 1147-1154. [31] YANG R, QIN Y, DAI L, et al.Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanatechnology, 2009, 4(1): 34-39. [32] JEONG C K, PARK K I, RYU J, et al.Large-Area and flexible lead-free nanacomposite generator using alkaline niobate particles and metal nanorod Filler[J]. 2014, 24(18): 2620-2629. [33] JEONG C K, KIM I, PARK K I, et al. Virus-Directed design of a flexible BaTio3 nanogenerator[J].2013, 7, (12): 11016-11025. [34] 沙江波, 朱平. I+II型弹塑性断裂的宏观与微观过程[J]. 西安交通大学学报, 1996, 30(12): 87094. [35] 郑长卿. 韧性断裂细观力学的初始研究及其应用[M]. 西安: 西北工业大学出版社, 1988, 8-19. [36] 刘国钊. 金属材料脆性断裂原因的实验探讨[J]. 冶金与材料, 2018, 38(6): 62-63. [37] 孙剑芬. SiCf/Ti复合材料静拉及疲劳力学行为研究[D]. 南京: 南京航空航天大学, 2016. [38] WANG X S, YAN C K, LI Y, et al.SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading[J]. International Journal of Fracture, 2008, 151(2): 269-279. [39] CHHETRI S, ADAK N C, SAMANTA P, et al.Investigation of the mechanical and thermal properties of L-glutathione modified graphene/epoxy composites[J]. Composites Part B-Engineering, 2018, 143: 105-112. [40] BABOUT L, BRECHET Y, MAIRE E, et al.On the competition between particle fracture and particle decohesion in metal martrix composites[J]. Acta materialia, 2004, 52(15): 4517. [41] KUMAR A, CHOUHAN D K, ALEGAONKAR P S, et al.Graphene-like nanocarbon: An effective nanofiller for improving the mechanical and thermal properties of polymer at low weight fractions. [42] 马新平, 尚德广, 刘豪, 等. 基于弹塑性有限元分析的电镀铜薄膜缺口疲劳断裂特性研究[J]. 机械强度, 2009, 31(5): 803-807. [43] 赵林, 杨军虎, 魏文澜, 等. P110H钢的高温拉伸性能及断裂机理[J]. 金属热处理, 2020, 45(4): 204-208. [44] 朱涛, 黄光杰, 曹玲飞, 等. 晶粒尺寸及取向对AZ31合金板材室温拉伸塑性变形与断裂机制的影响[J]. 中国有色金属学报, 2017, 27(11): 2195-2203. [45] LI M, WANG Y, ZHANG Y, et al.Highly flexible and stretchable MWCNT/HEPCP nanocomp-osite with integrated near-IR, temperature and stress sensitivity for electronic skin[J]. Journal of Materials Chemistry C, 2018, 6(22): 5877-5887. [46] ZHANG Y, XU G, WANG Y, et al.Mechanical properties study of W/TiN/Ta system multilayers[J]. Journal of Alloys and Compounds, 2017, 725: 283-290. [47] YAMAKI E, TAKAJASHI M.Corrosion resistance of Fe-Al-Alloy-Coated ferritic/martensitic steel under bending stress in high temperature lead-bismuth eutectic[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 797-804. [48] KUMAR A, CHOUHAN D K, ALEGAONKAR P S, et al.Graphene-like nanocarbon: An effective nanofiller for improving the mechanical and thermal properties of polymer at low weight fractions[J].Composites Science and Technology, 2016,127: 79-87. [49] 张学勇, 李斌, 付朝阳, 等. 复合型导电高分子材料的电阻-温度效应[J]. 材料导报, 2013, 27(S2): 174-178. [50] SIH G C.Mechanics of fracture initiation and propagation: surface and volume energy density applied as failure criterion[M]. Springer Science & Business Media, 2012. [51] 张宏波, 陈海坤, 周洁洁, 等. 柔性隔热材料拉伸断裂模式分析[J]. 宇航材料工艺, 2013, 43(5): 49-53. [52] ZHAO P F, SHANG F L.International Conference on Mechanical Properties of Materials[J]. 2010, 11(10): 794-803. [53] LETERRIER Y, MEDICO L, DEMARCO F, et al.Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays[J]. Thin Solid Films, 2004, 460(1): 156-166. [54] ZHANG Y, XU G, WANG Y, et al.Mechanical properties study of W/TiN/Ta system multilayers[J]. Journal of Alloys and Compounds, 2017, 725: 283-290. [55] MAO X, BAI Y, YU J, et al.Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. Journal of the American Ceramic Society, 2016, 99(8): 2760-2768. [56] GHONEIM M T, HUSSAIN M M.Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric[J]. 2015, 107(5): 052904. [57] LI T C, KUAN T H, LIN J F.Effects of inclination angle during Al-doped ZnO film deposition and number of bending cycles on electrical, piezoelectric, optical, and mechanical properties and fatigue life[J]. Journal of Vacuum Science & Technology, 2016, 34(2): 021501. [58] TASO S W, CHANG T C, WANG M C.Influence of mechanical bending and temperature on the threshold voltage instability of a-Si: H thin-film transistors under electrical stress[J]. Solid-State Electronics, 2011, 63(1): 55-59. [59] HAMASHA M M, ALZOUBI K, LU S, et al.Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate[J]. Thin Solid Films, 2011, 519(18): 6033-6038. [60] ALZOUBI K, LU S, SAMMAKIA B, et al.Experimental and analytical studies on the high cycle of thin film metal on PET substrate for flexible electronics applications[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2011, 1(1): 43-51. [61] YI S M, CHOI I S, KIM B J, et al.Reliability issues and solutions in flexible electronics under mechanical fatigue[J]. Electronic Materials Letters, 2018, 14(4): 387-404. [62] WANG X S, YAN C K, LI Y, et al.SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading[J]. International Journal of Fracture, 2008, 151(2): 269-279. [63] LI T C, KUAN T H, LIN J F, Effects of inclination angle during Al-doped ZnO film deposition and number of bending cycles on electrical, piezoelectric, optical, and mechanical properties and fatigue life[J]. Journal of Vacuum Science & Technology, 2016, 34(2): 021501. [64] JEN Y M, CHANG C W.Combined Temperature and Moisture Effect on the Monotonic and Fatigue Strengths of Sandwich Beams with Glass-Polypropylene Faces and Aluminum Foam Cores[J]. Polymers & Polymer Composites, 2018, 26(1): 69-78. [65] YANG S M, LEE Y S, JANG Y, et al.Electromechanical reliability of a flexible metal-grid transparent electrode prepared by electrohydrodynamic(EHD)jet printing[J]. Microelectronics Reliability, 2016, 65: 151-159. [66] CHHETRI S, ADAK N C, SAMANTA P, et al.Investigation of the mechanical and thermal properties of L-glutathione modified graphene/epoxy composites[J]. Composites Part B-Engineering, 2018, 143: 105-112. [67] 薛国宏, 陶伟明. 金属材料延性对其薄膜-柔性基底结构延展性的影响[J]. 力学季刊, 2013, 34(2): 270-274. [68] PUTTTTICK K E.Ductile fracture in mentals[J]. Philosophical magazine, 1959, 4(44): 964. [69] BABOUT L, BRECHET Y, MAIRE E, et al.On the competition between particle fracture and particle decohesion in metal martrix composites[J]. Acta Materialia, 2004, 52(15): 4517. [70] YIN Y, LIU X, HAN Q, et al.Simulation of ductile fracture of structural steels with void growth model and a continuum damage criterion based on it[J]. Theoretical and Applied Fracture Mechanics, 2018, 98: 134-148. [71] 郭河杰. 基于晶体塑性的铝合金韧性断裂细观力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. [72] 李宁宁. 高分子纳米复合材料拉伸及压缩的分子动力学模拟[D]. 合肥: 中国科学技术大学, 2014. [73] DENG H, SHI H, TSURUOKA S.Influence of coating thickness and temperature on mechanical properties of steel deposited with Co-based alloy hardfacing coating[J]. Surface & Coatings Technology, 2010, 204(23): 3927-3934. [74] JIA H, LIU F, AA Z, et al.Thin-film metallic glasses for substrate fatigue-property improvements[J]. Thin Solid Films, 2014, 561: 2-27. [75] 马新平, 尚德广, 刘豪, 等. 基于弹塑性有限元分析的电镀铜薄膜缺口疲劳断裂特性研究[J]. 机械强度, 2009, 31(5): 803-807. [76] 陈茜. 含过渡层软基纳米薄膜在双向拉伸下断裂损伤的实验研究[D]. 天津: 天津大学, 2017. [77] 郭振山. 纳米尺度金属薄膜在拉伸情况下的稳定性研究[D]. 天津: 天津大学, 2011. [78] 薛国宏, 陶伟明. 金属延展性对其薄膜-柔性基底结构延展性的影响[J]. 力学季刊, 2013, 34(02): 270-274. [79] 徐晓斌, 鹿业波, 邓星, 等. 薄膜太阳能电池弯曲疲劳极限检测系统的设计及制造[J]. 嘉兴学院学报, 2018, 30(6): 76-80. [80] KIM S W, CHOI H J, CHO Y S.Quantitative analysis of bending fracture resistance of nanoscale Cu-buffered ZnO: Al thin films on a polymer substrate[J]. Journal of Alloys and Compounds, 2018, 731: 49-54. [81] SPINELLI G, LAMBERTI P, TUCCI V, et al.Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring[J]. Composites Part B-Engineering, 2018, 145: 90-99. [82] WANG X S, YAN C K, LI Y, et al.SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading[J]. International Journal of Fracture, 2008, 151(2): 269-279. [83] VAUNOIS J R, POULAIN M, KANOUTE P, et al.Development of bending tests for near shear mode interfacial toughness measurement of EB-PVD thermal barrier coatings[J]. Engineering Fracture Mechanics, 2017, 171: 110-134. [84] 王建国, 刘宝良, 毕贤顺. 双复合材料结构基底厚度对薄膜裂纹的影响[J]. 黑龙江科技大学学报, 2007, 17(4): 251-253. |
[1] | LUO Jun-wen. Development of Large-Scale Metal Coil Surface Modification Continuous Roll to Roll Coating Production Line [J]. VACUUM, 2021, 58(3): 35-38. |
[2] | YU Hua-jun, ZHAO Xi-jun, WU Rui-jun. Solutions for Asymmetrical Target Erosion Due to Cross-Cathode Effect [J]. VACUUM, 2021, 58(3): 51-54. |
[3] | WANG Zi-lu, HAO Meng-yi, LI Zhen-xi, LI Jian-jun, HOU Jing-yue. Risk Identification and Precaution of Vacuum Consumable Melting for Titanium Alloys [J]. VACUUM, 2021, 58(3): 71-76. |
[4] | WU Yan-chao, LIU Yu-yao, LIU Yang, GAO Sheng-yuan, HUANG Mei-dong. Effects of Modulation Ratio on Mechanical Properties of Cr/TiN Nano-multilayers Prepared by Arc Ion Plating [J]. VACUUM, 2021, 58(2): 10-14. |
[5] | YU Qing-zhou, ZHANG Jun, LI Bin, GAO Ming-yi, LIU Ming-kun, CHAI Xiao-tong, GAN Shu-yi. Optimization of Temperature Field in Vacuum Degreasing Drying Tank for Air Conditioning Radiator [J]. VACUUM, 2021, 58(1): 82-85. |
[6] | CHAI Hao, JIA Jun-wei, WANG Bin, LI Peng, CUI Shuang, FENG Xu, LI Wei, LIU Zhan, LI Shao-fei, CHEN Quan. Design and Characteristic Study on Compact Microwave ECR Plasma Source [J]. VACUUM, 2021, 58(1): 6-9. |
[7] | BAI Biao-kun, CHEN Shu-ping, CHEN Lian, JIN Shu-feng, SHI Qing-zhi, MENG Yue. Experimental Study on Vacuum Adsorption Characteristics of Molecular Sieves at Liquid Nitrogen Temperature [J]. VACUUM, 2021, 58(1): 45-50. |
[8] | HE Ping. Study on Leakage Rate Test Method for Composite Cylinder [J]. VACUUM, 2020, 57(6): 54-58. |
[9] | LIU Lu-sheng, ZHAI Zhao-feng, YANG Bing, SONG Hao-zhe, YU Qi, SHI Dan, YUAN Zi-yao, LU Zhi-gang, CHEN Bin, ZHOU Mei-qi, LI Hai-ning, YU Biao, HUANG Nan, JIANG Xin. Development of Hot Filament Chemical Vapor Deposition Equipment for Continuous Diamond Film Preparation [J]. VACUUM, 2020, 57(6): 1-4. |
[10] | ZHONG Li, DAN Min, SHEN Li-ru, JIN Fan-ya, CHEN Mei-yan, LIU Tong, DENG Zhi. Effect of Hall Source Sputtering Cleaning Process on Bonding Properties of Ion Plating TiN Coatings [J]. VACUUM, 2020, 57(6): 5-6. |
[11] | LONG Guo-liang, WANG Zhi-rong, HU Hao, ZHANG Feng. Discussion on Cooling-Reversing System of Vacuum Furnace [J]. VACUUM, 2020, 57(4): 24-27. |
[12] | ZHAO Teng, ZHANG Hu, LIU Xiang, WU Jian-long, ZHANG Mi, ZHOU Rong-ping. Leak Rate Test and Intelligent Detection of Mechanical Vacuum Pump System for RH Refining Furnace [J]. VACUUM, 2020, 57(4): 28-31. |
[13] | WANG Pei, SUN Zhi-he, REN Qi-chen, DING Huai-kuang. Design of a Cable Inlet and Outlet Device for Using at Liquid Nitrogen to Room Temperature Zone [J]. VACUUM, 2020, 57(4): 66-71. |
[14] | YANG Fei, LI Zhen-hai, LI Jian-chang. Latest Studies on Solid Rocket Engine Nozzle Profile [J]. VACUUM, 2020, 57(1): 40-47. |
[15] | WU Le-yu. Applicability Research of Different High Barrier Composite Films on VIP with Groove [J]. VACUUM, 2020, 57(1): 62-66. |
|