欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (1): 78-82.doi: 10.13385/j.cnki.vacuum.2024.01.13

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Development of Feeding and Casting Ingot Dragging Device for Electron Beam Melting

YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, XU Wen-qiang   

  1. Research Institute of Physics and Chemistry Engineering of Nuclear Industry, Tianjin 300180, China
  • Received:2023-08-14 Online:2024-01-25 Published:2024-01-24

Abstract: Electron beam melting has the characteristics of high vacuum, high energy density, and precise control, and is widely used in the refractory metals industry. Relying on the electron gun technology and the LT102 device of the Research Institute of Physical and Chemical Engineering of Nuclear Industry, a set of feeding, melting, and casting ingot dragging devices for electron beam melting of refractory metals were designed. The technical requirements for the design of feeding, melting, and casting devices are mainly described, the smelting power for refractory metals is calculated, and the structural design function is introduced in detail. The developed feeding device has multiple work stations and refueling functions. The dragging device has functions of water cooling, pull-down, and rotation. The performance of the feeding and casting dragging device for the final assembly test meets the design requirements, and the equipment runs well in the overall melting experiment.

Key words: electron beam melting, feeding device, casting towing device, vacuum melting furnace, refractory metal

CLC Number:  TF841;TF305

[1] 张文林, 孙涛, 李娟莹. 电子束熔炼及其设备[J]. 冶金设备, 2003(4): 32-34.
[2] 贾国斌, 尹中荣. 电子束技术在难熔金属行业的应用[J]. 稀有金属材料与工程, 2012, 41(增刊2): 113-117.
[3] 谭毅, 石爽. 电子束技术在冶金精炼领域中的研究现状和发展趋势[J]. 材料工程, 2013(8): 92-100.
[4] ELLIS E A I, SPRAYBERRY M A, LEDFORD C, et al. Processing of tungsten through electron beam melting[J]. Journal of Nuclear Materials, 2021, 555: 153041.
[5] MLADENOV G, KOLEVA E, VUTOVA K, et al.Experimental and theoretical studies of electron beam melting and refining[M]//Practical Aspects and Applications of Electron Beam Irradiation. Trivandrum, India: Transword Research Network, 2011: 43-93.
[6] YANG G, YANG P, YANG K, et al.Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105040.
[7] CHOI G S, LIM J W, MUNIRATHNAM N R, et al.Preparation of 5N grade tantalum by electron beam melting[J]. Journal of alloys and compounds, 2009, 469(1/2): 298-303.
[8] XIAO B, JIA W, TANG H, et al.Microstructure and mechanical properties of a newly developed WTaRe refractory alloy by selective electron beam melting[J]. Additive Manufacturing, 2022, 54: 102738.
[9] MURR L E, LI S.Electron-beam additive manufacturing of high-temperature metals[J]. MRS Bulletin, 2016, 41(10): 752-757.
[10] VUTOVA K, VASSILEVA V.Electron-beam melting and reuse of metallic materials[J]. Metal Science and Heat Treatment, 2020, 62: 345-348.
[11] 刘喜海, 徐成海, 郑险峰. 真空冶炼[M]. 北京: 化学工业出版社, 2013.
[12] PATON B E, TRYGUB M P, AKHONIN S V.钛、锆及其合金的电子束熔炼[M]. 樊生文, 王殿儒, 张海峰, 译. 北京: 机械工业出版社, 2014.
[13] 王强. 电子束熔炼提纯冶金级硅工艺研究[D]. 大连: 大连理工大学, 2010.
[14] 张延宾, 孙照富, 尹中荣. 大型太阳能级多晶硅提纯用真空电子束熔炼炉的研制[J]. 真空, 2014, 51(4): 22-25.
[15] 张志平. 电子束熔炼炉连铸系统设计[J]. 真空, 2019, 56(4): 40-43.
[16] 张志平, 张帆, 张黎源, 等. 专用电子束熔炼炉的研制[J]. 天津冶金, 2015(5): 59-62.
[17] 刘业. 电子束熔炼法提纯钨过程中杂质的去除工艺及其机理研究[D]. 长沙: 中南大学, 2013.
[18] 张英明, 周廉, 孙军, 等. 电子束冷床熔炼TC4合金的热平衡分析[J]. 钛工业进展, 2008, 25(6): 34-37.
[19] 张行健. 提高全钽电容器外壳质量的研究[D]. 长沙: 中南大学, 2005.
[20] GEORGIEV G, VASILEVA V, NICOLOV T, et al.Refinement of Ti and Mo using electron beam melting[J]. Vacuum, 1990, 41(7/8/9): 2161-2164.
[21] 张靖周. 高等传热学[M]. 北京:科学出版社, 2009.
[1] LU Shao-bo, HAN Yong-chao, SONG Yan-peng, ZHANG Ji-feng. Design of Deep Well Vacuum Brazing Equipment for Nuclear Power Components Manufacturing [J]. VACUUM, 2023, 60(3): 72-75.
[2] WU Fan, LIN Bo-chao, QUAN Yin-zhu, , CHEN Wei, YANG Yang. Review on Equipment and Application of Electron-beam Based Additive Manufacturing [J]. VACUUM, 2022, 59(1): 79-85.
[3] MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo. Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace [J]. VACUUM, 2021, 58(5): 104-109.
[4] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Li-yuan, JIANG Zheng-he. Design of Vacuum Pumping System for Electron Beam Melting Furnace [J]. VACUUM, 2021, 58(5): 42-45.
[5] MA Jing, LI Jiao, GONG Xiao-tao, GENG Pei, ZHOU Chao. Effect of Electron Beam Melting Process on Surface Quality of Ta Ingot [J]. VACUUM, 2020, 57(6): 45-47.
[6] ZHANG Zhi-ping. Design of Continuous Casting System for Electron Beam Melting Furnace [J]. VACUUM, 2019, 56(4): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!