VACUUM ›› 2022, Vol. 59 ›› Issue (1): 79-85.doi: 10.13385/j.cnki.vacuum.2022.01.15
Previous Articles Next Articles
WU Fan1,2,3,4, LIN Bo-chao1,2,3,4, QUAN Yin-zhu, 1, CHEN Wei1,2,3,4, YANG Yang1,2,3,4
CLC Number:
[1] 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013, 42(4): 1-4. [2] CORMIER D, HARRYSSON O, WEST H.Characterization of H13 steel produced via electron beam melting[J]. Rapid Prototyping Journal, 2004, 10(1): 35-41. [3] SOCHALSKI-KOLBUS L M, PAYZANT E A. CORNWELL P A, et al. Comparison of residual stresses in inconel 718 simple parts made by electron beam melting and direct laser metal sintering[J]. Metallurgical and Materials Transactions A, 2015, 46(3): 1419-1432. [4] 汤慧萍, 王建, 逯圣路,等. 电子束选区熔化成形技术研究进展[J]. 中国材料进展, 2015, 34(3): 225-235. [5] ELECTRON BEAM ADDITIVE MANUFACTURING(EBAM ®). Benefits of wire vs powder metal 3D printing[EB/OL].https://www.sciaky.com/additive-manufa cturing/ wire-vs-powder. [6] DAVÉ V R.Electron beam(EB)-assisted materials fabrication[D]. Boston: Massachusetts Institute of Technology, 1995. [7] MATZ J E, EAGAR T W.Carbide formation in alloy 718 during electron-beam solid freeform fabrication[J]. Metallurgical and Materials Transactions A, 2002, 33(8): 2559-2567. [8] TAMINGER M, ROBERT M, HAFLEY R, et al.Electron beam freeform fabrication for cost effective near-net shape manufacturing[C]//Meeting on Cost Effective Manufacture via Net Shape Processing, Amsterdam: NASA Technical Reports Server, 2006. [9] HAFLEY R.Electron beam freeform fabrication: A rapid metal deposition process[C]//Proceedings of the 3rd Annual Automotive Composites Conference, Troy: Brooks Kushman, 2003. [10] WATSON J, HAFLEY R, PETERSEN D.Development of a prototype low-voltage electron beam freeform fabrication system[C]//13th Solid Freeform Fabrication Symposium, Austin: University of Texas at Austin, 2002. [11] DAVIS D.“Game-changer” to aid in F-35 production[EB/OL].(2012-04-13). https://www.thefabricator.com/thefabricator/blog/machining/game-changer-to-aid-in-f-35-production. [12] 巩水利,锁红波,李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013, 433(13): 66-71. [13] 陈哲源, 锁红波, 李晋炜. 电子束熔丝沉积快速制造成型技术与组织特征[J]. 航天制造技术, 2010(1): 36-39. [14] SUO H, CHEN Z, LIU J, et al.Microstructure and mechanical properties of Ti-6Al-4V by electron beam rapid manufacturing[J]. Rare Metal Materials and Engineering, 2014, 43(4): 780-785. [15] KÖRNER C. Additive manufacturing of metallic components by selective electron beam melting-a review[J]. International Materials Reviews, 2016, 61(5): 361-377. [16] GE. 100000 patients later: The 3D-printed hip is a decade old and going strong[EB/OL].(2018-07-02). https://www.ge.com/additive/stories/100000-patients-later-3d-printed-hip-decade-old-and-going-strong. [17] GOCKEL J, BEUTH J, TAMINGER K. Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V[J]. Additive Manufacturing, 2014, 1-4: 119-126. [18] KOVALCHUK D, IVASISHIN O.Additive manufacturing for the aerospace industry[M]. Amsterdam: Elsevier, 2019. [19] ANTONYSAMY A A, MEYER J, PRANGNELL P B.Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti6Al4V by selective electron beam melting[J]. Materials Characterization, 2013, 84: 153-168. [20] KIRKA M M, GREELEY D A, HAWKINS C, et al.Effect of anisotropy and texture on the low cycle fatigue behavior of Inconel 718 processed via electron beam melting[J]. International Journal of Fatigue, 2017, 105: 235-243. [21] CARROLL B E, PALMER T A, BEESE A M.Anisotropic tensile behavior of Ti-6Al-4V components fabricated with directed energy deposition additive manufacturing[J]. Acta Materialia, 2015, 87: 309-320. [22] SAMES W J, UNOCIC K A, DEHOFF R R, et al.Thermal effects on microstructural heterogeneity of Inconel 718 materials fabricated by electron beam melting[J]. Journal of Materials Research, 2014, 29(17): 1920-1930. [23] DEHOFF R R, KIRKA M M, SAMES W J, et al.Site specific control of crystallographic grain orientation through electron beam additive manufacturing[J]. Materials Science and Technology, 2015, 31(8): 931-938. [24] SCHWERDTFEGER J, KÖRNER C. Selective electron beam melting of Ti-48Al-2Nb-2Cr: Microstructure and aluminium loss[J]. Intermetallics, 2014, 49: 29-35. [25] JUECHTER V, SCHAROWSKY T, SINGER R F, et al.Processing window and evaporation phenomena for Ti-6Al-4V produced by selective electron beam melting[J]. Acta Materialia, 2014, 76: 252-258. [26] NAG S, SAMUEL S, PUTHUCODE A, et al.Characterization of novel borides in Ti-Nb-Zr-Ta+2B metal-matrix composites[J]. Materials Characterization, 2009, 60(2): 106-113. [27] BOOK T A, SANGID M D.Evaluation of select surface processing techniques for in situ application during the additive manufacturing build process[J]. JOM, 2016, 68(7): 1780-1792. [28] DONOGHUE J, ANTONYSAMY A A, MARTINA F, et al.The effectiveness of combining rolling deformation with wire-arc additive manufacture on β-grain refinement and texture modification in Ti-6Al-4V[J]. Materials Characterization, 2016, 114: 103-114. [29] COLEGROVE P A, COULES H E, FAIRMAN J, et al.Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782-1791. [30] FU Y, ZHANG H, WANG G, et al.Investigation of mechanical properties for hybrid deposition and micro-rolling of bainite steel[J]. Journal of Materials Processing Technology, 2017, 250: 220-227. [31] ZHANG H, HUANG C, WANG G, et al.Comparison of energy consumption between hybrid deposition & micro-rolling and conventional approach for wrought parts[J]. Journal of Cleaner Production, 2021, 279: 123307. [32] GAYTAN S M, MURR L E, MEDINA F, et al.Advanced metal powder based manufacturing of complex components by electron beam melting[J]. Materials Technology, 2009, 24(3): 180-190. [33] CHAUVET E, KONTIS P, JÄGLE E A, et al. Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron beam melting[J]. Acta Materialia, 2018, 142: 82-94. [34] PHAN M, FRASER D, CHEN Z W, et al.Solidification and microstructural control in selective electron beam melting of Co-29Cr-10Ni-7W alloy[J]. Materials Science Forum, 2018, 941: 902-907. [35] TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al.The influence of porosity on fatigue crack initiation in additively manufactured titanium components[J]. Scientific Reports, 2017, 7(1): 7308. [36] MASUO H, TANAKA Y, MOROKOSHI S, et al.Influence of defects, surface roughness and HIP on the fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. International Journal of Fatigue, 2018, 117: 163-179. [37] SIMPKINS R J, ROURKE M P, BIELER T R, et al.The effects of HIP pore closure and age hardening on primary creep and tensile property variations in a TiAl XDTM alloy with 0.1wt.% carbon[J]. Materials Science and Engineering: A, 2007, 463(1-2): 208-215. [38] PARAB N D, ZHAO C, CUNNINGHAM R, et al.Ultrafast X-ray imaging of laser-metal additive manufacturing processes[J]. Journal of Synchrotron Radiation, 2018, 25(5): 1467-1477. [39] LEUNG C L A, MARUSSI S, ATWOOD R C, et al. In situ X-ray imaging of defect and molten pool dynamics in laser additive manufacturing[J]. Nature Communications, 2018, 9(1): 1355. [40] 陈玮, 李志强. 航空钛合金增材制造的机遇和挑战[J]. 航空制造技术, 2018, 61(10): 30-37. [41] SIGL M, LUTZMANN S, ZAEH M.Transient Physical Effects in Electron Beam Sintering[C]//17th Solid Freeform Fabrication Symposium, Austin:University of Texas at Austin, 2006. [42] 冉江涛, 赵鸿, 高华兵,等. 电子束选区熔化成形技术及应用[J]. 航空制造技术, 2019, 62(Z1): 48-59. [43] LIN B, CHEN W, YANG Y, et al.Anisotropy of microstructure and tensile properties of Ti-48Al-2Cr-2Nb fabricated by electron beam melting[J]. Journal of Alloys and Compounds, 2020, 830: 154684. |
|