欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 62-67.doi: 10.13385/j.cnki.vacuum.2024.02.11

• Vacuum Acquisition System • Previous Articles     Next Articles

A Design Method Based on TRIZ Theory to Enhance the Base Pressure of Roots Vacuum Pump

LI Xiao-jin, LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LIU Xiao-wen   

  1. Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2023-04-21 Online:2024-03-25 Published:2024-03-28

Abstract: Using the causal analysis of TRIZ theory as a research tool, the basic reason and weakness that affect the base pressure of Roots vacuum pumps were obtained. The seal structure and rotor profile of the Roots vacuum pump were improved based on the enlightenment of the technological contradiction and the law of technological system evolution solution model, and then the ZJP70 Roots vacuum pump was optimized. The test results show that the base pressure of the optimized Roots vacuum pump is significantly increased under the same conditions. At the same time, the key indicators such as maximum zero flow compression ratio, overall leakage rate, and noise achieve significant improvement.

Key words: Roots vacuum pump, base pressure, TRIZ, vacuum motor, rotor profile

CLC Number:  TB752

[1] HOFFMAN D M, THOMAS J H, SINGH B.Handbook of vacuum science and technology[M]. San Diego, CA: Academic Press, 1998.
[2] DAY C.Vacuum technology[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014.
[3] LI Z Q, YANG S S, WANG X J, et al.Analysis and construction of a parabolic rotor profile for Roots vacuum pumps[J]. Journal of Physics: Conference Series, 2021, 1952(4): 042108.
[4] ISO/TC 112 Vacuum Technology. Vacuum technology- standard methods for measuring vacuum-pump performance-part 1: general description: ISO 21360-1:2020SO/TC 112 Vacuum Technology. Vacuum technology- standard methods for measuring vacuum-pump performance-part 1: general description: ISO 21360-1:2020[S]. Switzerland Gevena: ISO, 2020.
[5] 全国真空技术标准化技术委员会. 真空技术真空泵性能测量标准方法第1部分:总体要求: GB/T 40344.1-2021[S]. 北京:中国标准出版社, 2020.
[6] IN S R, KANG S P.Analysis of pumping characteristics of a multistage Roots pump[J]. Applied Science & Convergence Technology, 2015, 24(1): 9-15.
[7] BURMISTROV A, BELYAEV L, OSSIPOV P, et al.Combined experimental and calculation study of conductance of Roots pump channels[J]. Vacuum, 2001, 62(4): 331-335.
[8] COITO M I D D. Evaluation of sulfides formation and quality parameters in the sludge pumping system of Guia WWTP[EB/OL]. http://fenix.tecnico.ulisboa.pt/download- File/563345090413048/Extended %20 Final_Mariana %20Coito_65236.pdf.
[9] 李玉龙, 刘萍, 臧勇, 等. 一种高能罗茨泵用外直转子: CN211422908U[P].2020-09-04.
[10] 林岳. 创新方法教程(初级)[M]. 北京:高等教育出版社, 2012.
[11] 林岳. 企业创新方法务实:一线创新工程师读本[M]. 北京:化学工业出版社, 2018.
[12] 王欲知, 陈旭. 真空技术[M]. 2版. 北京:北京航空航天大学出版社, 2007.
[13] 翁建武, 周君斐, 罗根松, 等. 罗茨真空泵特性指标及测试方法研究[J]. 真空, 2015, 52(2): 7-11.
[14] 舒鹏程, 邢子文, 曹锋. 回转压缩机[M]. 西安:西安交通大学出版社, 2020.
[15] SUN S K, ZHAO B, JIA X H, et al.Three-dimensional numerical simulation and experimental validation of flows in working chambers and inlet/outlet pockets of Roots pump[J]. Vacuum, 2017, 137: 195-204.
[16] 祝敏, 王国栋, 王庆生, 等. 干式螺杆真空泵动密封结构的改进研究[J]. 真空科学与技术学报, 2015, 35(11): 1310-1314.
[17] 吴剑光. 罗茨真空泵泄漏量的建模与计算[D]. 沈阳:东北大学, 2007.
[18] 刘坤, 李培印, 李强, 等. 三轴罗茨真空泵的抽气理论和结构设计[J]. 真空科学与技术学报, 2015, 35(8): 934-939.
[19] WANG J, LIU R Q, YANG S R, et al.Geometric study and simulation of an elliptical rotor profile for Roots vacuum pumps[J]. Vacuum, 2018, 153: 168-175.
[20] 王君, 刘凯, 郑川, 等. 罗茨风机的全啮合转子型线构建[J]. 流体机械, 2012, 40(5): 30-33.
[21] 李海洋, 赵玉刚, 胡柳, 等. 渐开线型罗茨真空泵转子型线的改进研究[J]. 机床与液压, 2011, 39(22): 37-39.
[22] 刘厚根, 朱晓东, 赵厚继. 罗茨鼓风机渐开线型转子的改进分析[J]. 风机技术, 2009(5): 19-21.
[23] HSIEH C F.A new curve for application to the rotor profile of rotary lobe pumps[J]. Mechanism & Machine Theory, 2015, 87: 70-81.
[24] 全国真空技术标准化技术委员会. 罗茨真空泵:JB/T 7674-2017 [S]. 北京:中国标准出版社, 2017.
[1] LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LI Xiao-jin, LIU Xiao-wen, WANG Yi. Design and Analysis of a Rotor Profile for Roots Vacuum Pumps with an Elliptical Waist [J]. VACUUM, 2024, 61(1): 47-51.
[2] DENG Jia-liang, ZENG Huan, YANG Yang, FENG Xin-yu, WU Yi-feng. Performance Test of 200mm Diameter Cryopump for Semiconductor PVD Usage [J]. VACUUM, 2023, 60(5): 75-80.
[3] LI Zheng-qing, WANG Xiao-jun, HAN Xian-hu, CAI Yu-hong, LI Xiao-jin, YANG Jian-bin. Design and Machining of Circular Rotor Profiles for Roots Vacuum Pumps [J]. VACUUM, 2023, 60(1): 36-41.
[4] ZHANG Bao-fu, YU Yang, GAO Xun-yi, LI Jin-jian, WANG Jian-guo, WANG Ling-ling. Application of High Differential Pressure Roots Pump Combination Pumping System for Large Vacuum Distillation Deep Cut Unit [J]. VACUUM, 2022, 59(5): 45-49.
[5] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[6] ZHAI Yun-fei, ZHANG Shi-wei, HAN Feng, ZHAO Fan, XIE Yuan-hua. Thermodynamic calculation for pumping process in the trilobal Roots vacuum pump [J]. VACUUM, 2019, 56(3): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .