欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 73-78.doi: 10.13385/j.cnki.vacuum.2024.06.13

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Study on Forging Technology of Duplex Stainless Steel for Single Point Liquid Slip Ring in Vacuum Oxygen Argon Decarbonization Converter

XIONG Qing-hai1, LÜ Wei1, LIN Wen-sen1, ZHAN Chun-ming2   

  1. 1. Dalian Dingxi New Energy Equipment Technology Co., Ltd., Dalian 116000, China;
    2. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China
  • Received:2024-04-01 Online:2024-11-25 Published:2024-11-29

Abstract: Based on the service performance requirements of 2205 dual phase steel forgings for single-point liquid slip ring, the forging process of medium and large forgings for single-point liquid slip ring was designed. The refining technology of vacuum oxygen argon decarburization furnace (VODC) was used to ensure the purity of the ingot. The reasonable solution heat treatment process of medium and large forgings for single-point liquid slip ring was established. By finely regulating the parameters of heating and holding and cooling rate, the α + γ duplex stainless steel forgings with stable structure and uniform composition were successfully prepared, which effectively avoided the precipitation of Cr-rich σ brittle phase. The comprehensive performance test shows that the mechanical properties and corrosion resistance of the forging meet the technical requirements of the single-point liquid slip ring.

Key words: vacuum oxygen argon decarbonization, liquid slip ring, duplex stainless steel, heat treatment, forging

CLC Number:  TB752

[1] 刘志刚, 何炎平. FPSO转塔系泊系统的技术特征及发展趋势[J]. 中国海洋平台,2006,21(5):1-6.
[2] 《海洋石油工程设计指南》编委会. 海洋石油工程FPSO与单点系泊系统设计[M]. 北京:石油工业出版社,2009.
[3] 黄吉, 姜晓翔, 甘霏斐. FPSO国内外发展及市场展望[J]. 船舶工程, 2021(12):I0030-I0040.
[4] 李牧, 李鹏, 刘诗学, 等. FPSO单点滑环系统风险分析[J]. 船海工程, 2022, 51(2):30-33.
[5] 周守为, 曾恒一, 范模.我国浮式生产储油装置的研制与开发[J]. 中国海上油气, 2006, 18(2): 73-78.
[6] 黄澳, 陈吉, 张啸尘, 等.固溶处理对2205双相不锈钢组织与疲劳裂纹扩展规律的影响[J] . 钢铁研究学报, 2016, 28(8):64-68.
[7] 徐美玲, 亢淑梅, 陈婷婷, 等. 固溶处理对2205双相不锈钢的耐蚀性的研究[J].兵器材料科学与工程, 2019, 42(5):78-81.
[8] 王明军, 李春福, 王垚, 等. 2205双相不锈钢在大牛地气田的耐蚀性能研究[J] .热加工工艺,2017 , 46(16) :64-67.
[9] 李艳玲, 亢淑梅, 郭宏南, 等. 固溶处理对 2205双相不锈钢耐蚀性能的影响[J].材料开发与应用, 2018, 33(1) :59-63.
[10] POHL M, STORZ O, GLOGOWSKI T.Effect of intermetallic precipitations on the properties of duplex stainless steel[J]. Materials Characterization,2007,58(1):65-71.
[11] MARTINS M, CASTELETTI L C.Sigma phase morphologies in cast and aged super duplex stainless steel[J]. Materials Characterization, 2009, 60(8):792-795.
[12] 邹德宁, 韩英, 范光伟, 等. 时效处理对2205双相不锈钢焊接接头组织的影响[J].焊接学报, 2010, 31(11):69-72.
[13] 黄盛, 宋志刚, 郑文杰, 等. 固溶处理对 00Cr27Ni7 Mo5N不锈钢的组织及力学性能的影响[J].钢铁, 2011, 46(12):71-75.
[14] 王良, 杨茗凯, 胡议文, 等. 热处理对2205双相不锈钢显微组织及性能的影响[J].材料热处理学报, 2024, 45(2) :120-127.
[15] 向红亮, 陈盛涛, 邓丽萍. 固溶温度对Ag2205双相不锈钢组织与性能的影响[J]. 中南大学学报(自然科学版), 2019, 50(5):1056-1064.
[16] SHEN K, JIANG W, SUN C, et al.Insight into microstructure, microhardness and corrosion performance of 2205 duplex stainless steel:effect of plastic pre-strain[J]. Corrosion Science, 2023, 210:110847.
[17] WU J, CAO F J, SUN T, et al.Developing ultrafine-grained structure with balanced α/γ fraction via underwater friction stir processingenables enhanced wear and corrosion resistance of duplex stainless steel[J]. Surface and Coatings Technology, 2023,457:129295.
[18] 宋静思, 左野, 应冰, 等.真空感应熔炼炉主流结构及未来发展[J]. 真空, 2022, 59(4):70-75.
[19] 宋涛, 张柏诚, 王春雷, 等.大型串联电子束熔炼炉抽真空系统设计研究[J]. 真空, 2024, 61(4):30-34.
[20] 陈爱莲, 王金花.不锈钢与不锈钢制品生产技术工艺流程及质量检验标准实用手册[M]. 长春:吉林音像出版社, 2004.
[21] 谢飞, 潘建伟, 袁海. 一种双相不锈钢热处理工艺的优化[J]. 材料热处理学报, 2010, 31(9):68-72.
[1] SONG Jia-xing, ZHANG Gong-ming, WANG Ying, LI Zhong-ren, CHEN Ding, SU Ning, CHEN Bo-long. Simulation Analysis of Forging Frame in Hot Isostatic Furnace [J]. VACUUM, 2024, 61(3): 96-99.
[2] WANG Bao-lai, SU Ning, CHEN Ding, CHE En-lin, LIU Jun, WANG Zhen. Design Analysis of External Mechanized Chamber Heat Treatment Furnace [J]. VACUUM, 2024, 61(3): 79-83.
[3] WANG Gui-peng, HUANG Yu-xing, QU Shao-fen, GAO Guang-wei, XIE Yuan-hua, LIU Kun, BA De-chun. Study on Influence of the Change of Inlet and Outlet Angle of Impeller Blade of Vacuum Heat Treatment Furnace on Cooling Efficiency [J]. VACUUM, 2022, 59(5): 63-68.
[4] E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81.
[5] ZHANG Xin-hui, LI Qing-xiao. Effect of Vacuum Heat Treatment on Structure and Photoelectric Properties of AZO Film [J]. VACUUM, 2021, 58(3): 45-50.
[6] WANG Ying, MING Yue, DAI Yu-bo, CHE En-lin, WANG Biao. Structure Optimization of Graphite Furnace for Vacuum High Temperature Heat Treatment Furnace [J]. VACUUM, 2020, 57(6): 27-30.
[7] WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6.
[8] WANG Zhi-rong, MA Qiang, LONG Guo-liang, LI Xue-feng, LIU Cheng. Development and Application of Multi-Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2019, 56(5): 6-11.
[9] WANG Bo, ZHANG Zhong-he, WANG Fei-yu, WANG Shuai, YAN Shuai, CUI Tian-long, ZHANG Zhong-xin. Study on Vacuum Heat Treatment Distortions of Martensite Precipitation Hardening Stainless Steel [J]. VACUUM, 2019, 56(4): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .