欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2021, Vol. 58 ›› Issue (3): 45-50.doi: 10.13385/j.cnki.vacuum.2021.03.09

• Thin Film • Previous Articles     Next Articles

Effect of Vacuum Heat Treatment on Structure and Photoelectric Properties of AZO Film

ZHANG Xin-hui1, LI Qing-xiao2   

  1. 1. School of Energy and Building Enviroment Engineering,University of Urban Construction,Pingdingshan 467036,China;
    2. School of Materials and Chemical Engineering,University of Urban Construction,Pingdingshan 467036,China
  • Received:2020-06-18 Online:2021-05-25 Published:2021-06-01

Abstract: AZO thin films were respectively deposited on the preheated glass substrate and room temperature by DC magnetron sputtering, and AZO films prepared at room temperature were annealed in vacuum. X-ray diffractometer, ultraviolet-visible spectrometer, four-point probes and Hall tester were used to character the prepared samples. The effects of two heat treatment methods, i.e.substrate pre-heating and vacuum annealing, on the structure and photoelectric properties of AZO thin films were comparatively studied. The results show that AZO thin films prepared under substrate preheating condition effectively inhibit the formation of(101)polycrystalline phase. AZO thin films prepared at room temperature have more(101)polycrystalline phase formation, and after vacuum annealing heat treatment, the(101)polycrystalline phase cannot be well eliminated. AZO thin films with a thickness of 380 nm and a square resistance of 20Ω/□ were prepared under the substrate preheating condition, the average transmittance between 400 nm and 1200 nm wavelength is 81.5%. The vacuum-annealed AZO film with a thickness of 403nm and a square resistance of 33Ω/□ has an average transmittance of 81.9% in the 400-1200nm band.

Key words: AZO thin film, vacuum, heat treatment, sheet resistance, photoelectric properties

CLC Number: 

  • TN304
[1] PROOST J, HENRY F, TUYAERTS R, et al.Effect of internal stress on the electro-optical behaviour of Al-doped ZnO transparent conductive thin films[J]. J. Appl. Phys, 2016, 120: 075308.
[2] SIEBER I, WANDERKA N, URBAN I, et al.Electron microscopic characterization of reactively sputtered ZnO films with different Al2 doping levels[J]. Thin Solid Films, 1998, 330: 108-113.
[3] PARK K C, MA D Y, KIM K H.The physical properties of Al-doped zinc oxide films prepared by r. f. magnetron sputtering[J]. Thin Solid Films, 1997, 305: 201-209.
[4] 李世涛, 乔学亮, 陈建国. 透明导电薄膜的研究现状及应用[J]. 激光与光电子学进展, 2003, 40(7): 53-59.
[5] 杨田林, 张德恒, 李滋然, 等. 射频磁控溅射制备的柔性衬底ZnO: Al透明导电薄膜的研究[J]. 太阳能学报, 1999, 20(2): 200-203.
[6] HIROSHI Y, KAZUSHIGE U, HIROMICHI O, et al.Fabrication of all oxide transparent p-n homojunction using bipolar CuInO2 semiconducting oxide with delafossite structure[J]. Solid State Communications, 2002, 121(1): 15-18.
[7] 宋健全, 刘正堂. 红外增透膜系软件设计及应用[J]. 红外技术, 2001, 23(2): 1-7.
[8] ZHANG D H, YANG T L, MA J, et al.Preparation of transparent conducting ZnO: Al films on polymer substrates by r. f. magnetron sputtering[J]. Applied Surface Sciences, 2000, 158(1): 43-48.
[9] YANG T L, ZHANG D H, MA J, et al.Transparent conducting ZnO:Al films deposited on organic substrates deposited by r. f. magnetron sputtering[J]. Thin Solid Films, 1998, 326(1-2): 60-62.
[10] 陈源, 张德恒, 马瑾, 等. 不同有机衬底上沉积的ZnO: Al透明导电膜的研究[J]. 半导体杂志, 1999, 24(3): 1-4.
[11] TONG H, DENG Z, LIU Z, et al.Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films[J]. Appl. Surf. Sci, 2011, 257: 4906-4911.
[12] LEE J, LEE D, LIM D, et al.Structural, electrical and optical properties of ZnO: Al films deposited on flexible organic substrates for solar cell applications[J]. Thin Solid Films, 2007, 515: 6094-6098.
[13] AGURA, H, SUZUKI A, MATSUSHITA T, et al.Low resistivity transparent conducting Al-doped ZnO films prepared by pulsed laser deposition[J]. Thin Solid Films, 2003, 445(2): 263-267.
[14] BANERJEE, P, LEE W J, BAE K R, et al.Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films[J]. Journal of Applied Physics, 2010, 108(4): 043504.
[15] KIM, K H, PARK K C, MA D Y, et al.Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering[J]. Journal of Applied Physics, 1997, 81(12): 7764-7772.
[16] SARAVANAN P, GNANAVELBABU A, PANDIARAJ P.Effect of pre-annealing on thermal and optical properties of ZnO and Al-ZnO thin films[J]. International Journal of Nanoscience, 2017, 16(3): 1760017.
[17] LI T S, HE G, LI W D, et al.Microstructure Optimization and Optical Properties Modulation of Sputtering-Derived ZnO Thin Films[J]. Sci. Adv. Mater, 2014, 6: 908-914.
[18] HE G, LIU J, CHEN H, et al.Interface control and modification of band alignment and electrical properties of HfTiO/GaAs gate stacks by nitrogen incorporation[J]. J. Mater. Chem. C., 2014, 2(27): 5299-5308.
[19] ZHANG J W, HE G, ZHOU L, et al.Microstructure optimization and optical and interfacial properties modulation of sputtering derived HfO2 thin films by TiO2 incorporation[J]. J. Alloys Comp., 2014, 611: 253-259.
[20] MELJANAC D, JURAIL K, MANDI V, et al.The influence of thermal annealing on the structural, optical and electrical properties of AZO thin films deposited by magnetron sputtering[J]. Surface & Coatings Technology, 2017, 321: 292-299.
[21] MA C H, LU X S, XU B, et al.Effects of sputtering parameters on photoelectric properties of AZO film for CZTS solar cell[J]. Journal of Alloys and Compounds, 2019, 774: 201-209.
[22] TSENG S F.Investigation of post-annealing aluminum-doped zinc oxide(AZO)thin films by a graphene-based heater[J]. Applied Surface Science, 2018, 48: 163-167.
[23] PREPELITA P, CRACIUN V, GAROI F, et al.Effect of annealing treatment on the structural and optical properties of AZO samples[J]. Appl. Surf. Sci., 2015, 352: 23-27.
[24] KARS D I, OZEN Y, KIZILKAYA K, et al.Effects of annealing and deposition temperature on the structural and optical properties of AZO thin films[J]. J Mater Sci: Mater Electron, 2013, 24: 142-147.
[25] ELLMER K, KLEIN A, RECH B.Transparent conductive zinc oxide: basics and application in thin film solarcells[M/OL].Berlin: Springer,[2008].https://www.springer.com/gp/book/9783540736110.
[26] ZAWADZKI W, MOSS T S.Handbook on Semiconductors[M]. North-Holland: Amsterdam. 1982: 713.
[27] PISARKIEWICZ T, ZAKRZEWSKA K, LEJA E.Scattering of charge carriers in transparent and conducting thin oxide films with a non-parabolic conduction band[J]. Thin Solid Films, 1989, 174: 217-223.
[28] QIAO Z, LATZ R, MERGEL D.Thickness dependence of In2O3: Sn film growth[J]. Thin Solid Films, 2004, 466(1-2): 250-258.
[29] DAWAR A L, JAIN A K, JAGADISH C, et al.Semiconducting transparent thin films[M]. Boca Raton: CRC Press, 1995: 523-530.
[30] 赖发春, 林丽梅, 瞿艳. 反应磁控溅射制备TiO2和Nb2O5混合光学薄膜[J]. 光子学报, 2006, 35(10): 1551-1554.
[31] 李丹, 何愿华, 柳清菊. TiO2薄膜光学性质的研究[J]. 大学物理, 2005, 24(7): 36-39.
[32] FANG Rong-Chuan(方容川). Solid State Spectroscopy(固体光谱学). Hefei: Press of University of Science and Technology of China, 2003.
[1] TAN Biao, HUANG Tao, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, LIU Shun-ming, SUN Xiao-yang, DONG Hai-yi. The Vacuum System of RCS at CSNS [J]. VACUUM, 2021, 58(3): 1-6.
[2] ZHANG Long-he. Analysis and Treatment of Common Faults of Oil Sealed Rotary Vacuum Pump [J]. VACUUM, 2021, 58(3): 17-22.
[3] LI Bo, LIU Jun-nan, ZHANG Min, XUE Song, CHEN Ming. Ion Pump Performance Test Used by Shanghai Synchrotron Radiation Facility [J]. VACUUM, 2021, 58(3): 13-16.
[4] TIAN Hu-lin, YANG Zhen, BAI Xiang-chun, WEI Meng-meng, YAN Rui, WANG Huan, LU Yao-wen. Research of Online Calibration System for Vacuum Gauge [J]. VACUUM, 2021, 58(3): 55-58.
[5] LIU Guo-ting, CHENG Yong-jun, CHEN Lian, WANG Yu-jie, SUN Wen-jun, DONG Meng, WU Cheng-yao, SONG Yi, WEI Ning-fei. Study on the Method of Indirectly Measuring the Vacuum Degree of Seals by Using Leakage Rate [J]. VACUUM, 2021, 58(3): 59-64.
[6] E Dong-mei. Application of Vacuum Technology in Aerospace [J]. VACUUM, 2021, 58(3): 77-81.
[7] LV Qian-qian, SUN Zhen-chuan, ZHOU Jian-jun, YANG Zhen-xing, CHEN Rui-xiang, YOU Hui-jie. Laboratory Experiment on the System Performance of Low Vacuum Piping [J]. VACUUM, 2021, 58(3): 7-12.
[8] SHI Yang, XIE Yong-qiang, WU Chun-hui, BAO Xiang, WANG Cheng-jun, WANG Yong-qing, ZHAO Xing-liang. Study on Effect of Material Outgassing on the Pressure Rise Rate in Vacuum Brazing System [J]. VACUUM, 2021, 58(2): 42-47.
[9] LIU Meng, WU Jian-long, ZHAO Teng, ZHU Lang-tao, CAO Hai-ling, ZHANG Ming, MA Zheng-feng, ZHANG Mi, FU Deng-feng. Research and Application of Remote Fault Diagnosis System for Mechanical Vacuum Pump [J]. VACUUM, 2021, 58(2): 48-51.
[10] SONG Jing-si, WANG Ting, LI Xiu-zhang, CHEN Jiu-qiang, ZHANG Zhe-kui. Study on the Structure Layout of a Large Vacuum Precision Casting Furnace [J]. VACUUM, 2021, 58(2): 31-36.
[11] LIU Yan-wen, ZHAO Li, LU Yu-xin, TIAN Hong, SHI Wen-qi, ZHAO Heng-bang. Storage of Copper Parts Used in Microwave Vacuum Devices [J]. VACUUM, 2021, 58(2): 58-61.
[12] CHEN Zhi-tao. Development of Coating Equipment for Four Meter Trough Vacuum Solar Collector [J]. VACUUM, 2021, 58(2): 20-26.
[13] YANG Nai-heng. Process and Device of Vacuum Degassing Treatment for Steel Ladle [J]. VACUUM, 2021, 58(2): 37-41.
[14] WANG Xun. Vacuum Measurement and Application for Aerospace [J]. VACUUM, 2021, 58(1): 15-18.
[15] CAI Xiao, CAO Zeng, ZHANG Wei, LI Rui-jun, HUANG Yong. Development of Pre-pumping System for Vacuum Chamber of HL-2M [J]. VACUUM, 2021, 58(1): 33-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!