欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (1): 1-9.doi: 10.13385/j.cnki.vacuum.2025.01.01

• Measurement and Control •     Next Articles

Development of the Thermal Cathode

LIU Yanwen1, SHANG Xinwen1, LU Yuxin2, TIAN Hong1, ZHAO Hengbang1, WANG Xiaoxia1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100090, China;
    2. Tianjin Traffic Vocational Institute, Tianjin 300110, China
  • Received:2023-10-25 Online:2025-01-25 Published:2025-02-10

Abstract: Microwave vacuum electron devices are used in a wide variety of areas, such as radar, space technology and electron accelerators. The thermal cathode is one of the cores of the vacuum electron devices, its performances directly determine the reliability and lifetime of the electron devices. Therefore, a higher demand is put for thermal cathode. It is important to determine the temperature of the hot cathode accurately. The thermal electron emission performance of different cathodes is summarized and compared, including the comparison of the uniformity of hot electron emission between nano-particulated thin film cathode and traditional coated cathode, and the variation of ion current of evaporates from S-type cathode and M-type cathode (coated with iridium) and N-type cathode (coated with iridium nano-particulated thin films) with temperature and time. The temperature of the cathode surface and the cathode side (molybdenum tube) are tested by the infrared thermometer, optical pyrometer, and thermocouple thermometer (platinum and rhodium-platinum).

Key words: microwave vacuum electronics, thermal cathode, temperature, metal cathode, oxide cathode, impregnated cathode

CLC Number:  TN105.1

[1] 廖复疆. 大功率微波真空电子学技术进展[J]. 电子学报,2006, 34(3): 513-516.
[2] SHIN Y M, BARNETT L R, GAMZINA D, et al.Terahertz vacuum electronic circuits fabricated by UV lithographic molding and reactive ion etching[J]. Applied Physics Letters, 2009, 95(18): 181505.
[3] CHU K R.The electron cycltron maser[J]. Reviews of Modern Physics, 2004,76: 489.
[4] SIRIGIRI J R, SHAPRIO M A, TEMKIN R J.High power 140 GHz quasi-optical gyrotron travelling wave amplifier[J]. Physical Review Letters, 2003, 90: 258302.
[5] SZABO J.Explosive growth in electric propulsion[J]. Aerospace America, 2019, 57(11): 46.
[6] LEVCHENKO I, KEIDAR M, CANTRELL J, et al.Explore space using swarms of tiny satellites[J]. Nature, 2018, 562: 185-187.
[7] GOEBEL D M, JAMESON K K, HOFER R R.Hall thruster cathode flow impact on coupling voltage and cathode life[J]. Journal of Propulsion & Power, 2012, 28(2): 355-363.
[8] LEVCHENKO I, BAZAKA K, BELMONTE T, et al.Advanced materials for next-generation spacecraft[J]. Advanced Materials, 2018, 30(50): 1802201.
[9] LEVCHENKO I, BAZAKA K, MAZOUFFRE S, et al.Prospects and physical mechanisms for photonic space propulsion[J]. Nature Photonics, 2018, 12: 649-657.
[10] LEVCHENKO I, BAZAKA K, DING Y, et al.Space micropropulsion systems for cubesats and small satellites: from proximate targets to furthermost frontiers[J]. Applied Physics Reviews, 2018, 5(1): 011104.
[11] KREJCI D, MIER-HICKS F, THOMAS R, et al.Emission characteristics of passively fed electrospray microthrusters with propellant reservoirs[J]. Journal of Spacecraft & Rockets, 2017, 54(2): 447-458.
[12] CHEN C, CHEN M L, ZHOU H H.Characterization of an ionic liquid electrospray thruster with a porous ceramic emitter[J]. Plasma Science and Technology, 2020, 22(9): 094009.
[13] WANG X X, LIAO X H, LUO J R.Study on the Ni-Re-Ir sponge oxide cathode[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 491-495.
[14] LIU Y W, TIAN H, LU Y X.Influences of diamond material on heat dissipation capabilities of helical slow wave structures[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5321-5326.
[15] 王金淑, 周美玲, 左铁镛, 等. 钨钼热阴极材料的进展[J].稀有金属, 2001, 25(1): 64-67.
[16] POTRIVITU G C, XU L, HUANG S, et al.Discharge mode transition in a krypton-fed 1 A-class LaB6 cathode for low-power Hall thrusters for small satellites[J]. Journal of Applied Physics, 2020, 127: 064501.
[17] 张敏, 王小霞, 罗积润, 等.等离子喷涂含钪氧化物阴极制备及发射特性研究[J]. 物理学报, 2012, 61(7): 468-473.
[18] LIU Y W, TIAN H, LI F, et al.Effects of nanomaterials on Cs3Sb photocathode emission performance[J]. AIP Advances, 2022, 12(3): 035004.
[19] 刘燕文, 刘胜英, 田宏, 等.用于空间行波管的高效率覆膜阴极组件的研究[J].真空科学与技术学报, 2006, 26(3): 240-242.
[20] THOMAS R E, GIBSON J W, HAAS G A, et al.Thermionic sources for high brightness electron beams[J]. IEEE Transactions on Electron Devices, 1990, 37(3): 850-861.
[21] 郭艳群, 聂祚仁, 席晓丽, 等.钨热电子发射材料的研究进展[J].稀有金属, 2005, 29(2): 200-205.
[22] ISAGAWA S, HIGUCHI T, KOBAYASHI K, et al.Application of M-type cathodes to high-power cw klystrons[J]. Applied Surface Science, 1999, 146(1-4): 89-96.
[23] IVES R L, FALCE L R, MIRAM G, et al.Controlled porosity catlodes for high-current- density application[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1345-1353.
[24] CHIBA A, AKIYAMA Y.Life test evaluation of 411M cathode for highly reliable satellite TWTs[J]. Applied Surface Science, 1999, 146(1-4): 120-125.
[25] QIN J F, ZHANG G M, XING Y J.Direct growth of tungsten oxide nanorods from heated tungsten foils[J]. Science China Technological Sciences, 2012,55: 1503-1508.
[26] WHALEY D R, DUGGAL R, ARMSTRONG C M, et al.100 W operation of a cold cathode TWT[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 896-905.
[27] 刘燕文, 刘胜英.一种金属纳米薄膜浸渍钡钨阴极的制备方法:CN200410101870.4[P].2010-12-24.
[28] 刘燕文, 田宏, 韩勇, 等.新型的覆纳米粒子薄膜阴极的研究[J].物理学报, 2009, 58(12): 8635-8642.
[29] 刘学悫. 阴极电子学[M].北京:科学出版社,1980.
[30] 廖复疆. 真空电子技术:信息装备的心脏[M].北京:国防工业出版社,1999.
[31] 王金淑, 刘伟, 李娜, 等.稀土难熔金属阴极材料研究进展[J].真空电子技术, 2006(2):5-9.
[32] 王发展, 张晖, 丁秉钧.钨阴极材料及其研究进展[J].材料导报, 2001, 15(6): 10-12.
[33] WANG J S, LIU W, LI L L, et al.A study of scandia-doped pressed cathodes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 799-804.
[34] 杨晓青, 罗振中, 郭荣辉, 等. 钨电极材料研究进展[J].稀有金属与硬质合金, 2005, 33(4): 52-54.
[35] BAGUE P,DORNKET J,CHOLIER L, et al.Evidence for the phenomenon of carburization- decarburization of tungsten carbide[J]. Journal of Physics D: Applied Physics, 1994, 27(2): 402.
[36] 席晓丽, 聂祚仁, 杨建参, 等. 掺杂方式对钨电子发射材料性能和结构的影响[J]. 稀有金属, 2004, 28(2): 293-296.
[37] 王哲, 王芦燕, 章德铭.成分配比对稀土钨电极材料组织及力学性能影响[J].有色金属工程, 2022, 12(8):55-61.
[38] 席晓丽, 聂祚仁, 郭艳群, 等. 纳米铈-钨发射材料的结构与热发射性能研究[J].中国稀土学报, 2005, 23(1): 36-39.
[39] 李淑霞, 魏光明, 朱瑞. 镧钨电极材料[J]. 中国钨业, 1998,(6): 42-44.
[40] 陈文革, 丁秉均, 张晖. 纳米晶W-La2O3电极材料的电弧特性[J]. 中国有色金属学报, 2003, 13(5): 1103-1106.
[41] KOITABASHI, YAHAMOTO,SOOZUKI. Mitsubishi Denki Laboratory Reports[R]. 1973, 14(1-4): 53.
[42] 杨伯华, 陈响明, 喻玮强. 复合稀土钨电极研究[J]. 中国钨业, 2003, 18(2): 38-43.
[43] 聂祚仁, 周美玲, 陈颖, 等. 二元复合稀土钨电极材料的性能[J]. 金属学报, 1999, 35(3): 334-336.
[44] 贾佐诚, 康庆华, 齐燕波, 等. 新型稀土电极材料[J]. 粉末冶金技术, 1993, 11(3): 196-201.
[45] 廖显恒,王小霞,赵青兰,等.氧化物阴极的应用研究及发展[J].微波学报, 2010 (增刊1): 534-538.
[46] 王小霞, 张敏, 赵青兰. 一种制备镍钪海绵氧化物阴极的方法:CN201110309990.3[P].2013-04-17.
[47] 王小霞, 廖显恒, 罗积润, 等. 新型贮存式氧化物阴极寿命机理的初步探讨[J]. 物理学报, 2009, 58(2): 1280-1286.
[48] 王小霞, 廖显恒, 罗积润, 等. 一种贮存式氧化物阴极[J]. 电子与信息学报, 2006, 11,28(11):2179-2181.
[49] 张敏, 王小霞. 等离子喷涂氧化物阴极的涂层表面分析探讨[J].真空电子技术, 2017(3): 58-60.
[50] 张恩虬. 关于热电子发射理论的评述(Ⅲ):动态表面发射中心[J]. 物理学报, 1976, 25(1): 23-30.
[51] LIAO X H, WANG X X, ZHAO Q L, et al.Development of new types of oxide cathodes[J]. Applied Surface Science, 2005, 251(1-4): 64-68.
[52] SAITO M, SUZUKI R, FUKUYAMA K, et al.Investigation of Sc/sub 2/O/sub 3/ behavior in Sc/sub 2/O/sub 3/-dispersed oxide cathodes[J]. IEEE transactions on electron devices, 1990, 37(12): 2605-2611.
[53] 王亦曼. 高电流密度热阴极的进展[J]. 真空电子技术, 1994 (4): 8-13.
[54] LEMMENS H J.A new thermionic cathode for heavy loads[J]. Philips Technology Review, 1950, 11: 341-350.
[55] 张红卫. 大功率微波管阴极的研制和制备[D]. 合肥:合肥工业大学, 2007.
[56] LI J, YU Z Q, SHAO W S, et al.High current density M-type cathodes for vacuum electron devices[J]. Applied Surface Science, 2005, 251(1-4): 151-158.
[57] CRONIN J L.Modern dispenser cathodes[J]. IEE Proc., 1981, 128(1): 19-32.
[58] ZALM P, VAN STRATUM A J A. Osmium dispenser cathodes[J]. Philips Technology Review, 1966, 27(3/4): 69-75.
[59] SHAO W S, ZHANG K, LI J, et al.Gas poisoning investigations of scandate and M-type dispenser cathodes[J]. Applied Surface Science, 2003, 215(1-4): 54-58.
[60] GREEN M C, SKINNER H B, TUCK R A.Osmium-tungsten alloys and their relevance to improved M-type cathodes[J]. Applications of Surface Science, 1981, 8(1/2): 13-35.
[61] 刘燕文, 王小霞, 田宏, 等. 纳米粒子薄膜热电子发射性能[J]. 中国科学: 信息科学, 2015, 45(1): 145-156.
[62] LIU Y W, TIAN H, HAN Y, et al.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3618-3624.
[63] 曹贵川, 林祖伦, 祁康成, 等. 钪钨基体钡钨热阴极发射性能研究[J].电子元器件应用, 2012, 14(11): 21-24.
[64] FUKUDA S, HAYASHI K, MAEDA S, et al.Performance of a high-power klystron using a BI cathode in the KEK electron linac[J].Applied Surface Science, 1999, 146(1-4):84-88.
[65] 刘燕文, 田宏. 小多注速调管覆膜阴极的制备方法:CN00132779.8 [P].2000-11-17.
[66] 李爱君, 王建忠, 敖庆波, 等. 钪酸盐阴极的研究进展[J]. 材料保护,2013(增刊2):142-144.
[67] 方荣, 陆玉新. 热阴极的发展现状[J].真空电子技术, 2015(1):12-19.
[68] 陶斯武, 王金淑, 王亦曼, 等. 钪系阴极的发展概况[J]. 稀有金属, 2003, 27(2): 268-272.
[69] HASKER J, VAN ESDONK J, CROMBEEN J E.Properties and manufacture of top-layer scandate cathodes[J]. Applied Surface Science, 1986, 26(2): 173-195.
[70] YAMAMOTO S, TAGUCHI S, AIDA T, et al.Some fundamental properties of Sc2O3 mixed matrix impregnated cathodes[J]. Applications of Surface Science, 1984, 17(4): 504-516.
[71] MITCHELL R, GARDNER B, ILG T, et al.Upgrades to the injector cathode and supporting structure of the DARHT second axis accelerator[C]// Particle Accelerator Conference. Proceedings of PAC09. Vancouver, BC, Canada, 2009.
[72] 杨安民, 夏连胜, 王辉, 等. 大直径钪酸盐阴极发射特性[J].强激光与粒子束, 2011, 23(6): 1621-1624.
[73] RICHARDSON O W.Electron theory of matter[J]. Philosophical Magazine, 1912, 23: 599-609.
[74] 刘燕文, 陆玉新, 田宏,等.微波电真空器件用热阴极的温度测量[J].强激光与粒子束, 2016, 28(7): 79-83.
[75] SCIT系列分离式红外温度计用户手册[Z].SCIT系列分离式红外温度计用户手册[Z]. 北京:中国科学院自动化研究所,2011.
[76] 刘燕文,田宏,韩勇,等.支取发射电流过程对热阴极温度影响的研究[J]. 中国科学:技术科学, 2008, 38(9): 1515-1520.
[77] LIU Y W, TIAN H, HAN Y, et al.Temperature variation of a thermionic cathode during electron emission[J]. Science in China Series E: Technological Sciences, 2008, 51: 1497-1501.
[1] WANG Guo-fang, LIU Jia-lin, SUN Cheng-kai, LIU Hai-jing, ZHANG Jing, DONG De-sheng. Design and Research of a High Precision External Heat Flow Simulation Control System [J]. VACUUM, 2024, 61(4): 65-70.
[2] YANG Gang, OU Chen-xi, CHEN Xin-hui, HUANG Si. Study on Fluid-thermal-solid Coupling Numerical Simulation on the Temperature Rise of Hydrogen Storage Cylinder During Fast Filling Process Based on ANSYS [J]. VACUUM, 2024, 61(3): 26-32.
[3] LIU Yu-zhuo, WANG Xin, LI Na, ZHEN Zhen, XU Zhen-hua. Influence of Critical CVD Processing Parameters on High Temperature Protective Performance of (Ni,Pt)Al Coatings [J]. VACUUM, 2024, 61(3): 63-69.
[4] LIU Lin, FANG You-wei, GAO Cha, WANG Jian, LUO Ji-run. Development of the Diamond Energy Transfer Window for 140 GHz Cyclotron [J]. VACUUM, 2024, 61(3): 100-104.
[5] LI Can-min, DONG Zhong-lin, XIA Zheng-wei, ZHANG Xin-feng, WEI Rong-hua. Microstructure and Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2024, 61(2): 10-15.
[6] LIU Chu-yan, LIU Zhao-xian, REN Guo-hua, HAN Yan, SUN Li-chen, YAN Rong-xin, MENG Dong-hui. Effect of Temperature on the Leakage Rate of Graphene Vacuum Standard Leak [J]. VACUUM, 2024, 61(2): 37-41.
[7] ZHAO Zhen-yun, CHEN Ding-jun, GUO Yuan-meng, YANG Hao, DONG Shuai, SUN Tie-sheng, HUANG Mei-dong. Hydrophobic Properties of Chromium Nitride Thin Films at Different Temperatures [J]. VACUUM, 2024, 61(1): 27-33.
[8] LIU Hai-jing, DONG De-sheng, WANG Xiao-zhan, LI Can-lun, FENG Lei, JI Kun, JIN Zhao-feng. Research on the Application of Temperature Control of Large-sided Array Black Body in High Vacuum Cold and Black Environments [J]. VACUUM, 2024, 61(1): 74-77.
[9] LU Shao-bo, HAN Yong-chao, SONG Yan-peng, ZHANG Ji-feng. Design of Deep Well Vacuum Brazing Equipment for Nuclear Power Components Manufacturing [J]. VACUUM, 2023, 60(3): 72-75.
[10] SU Fei, WANG Kui-han, XIA Chun-ming, ZHAO Xiao-dong. Interpretation of AMS2750F and Development of Temperature Sensor [J]. VACUUM, 2023, 60(2): 78-85.
[11] LIU Xing-long, SHEN Pei, WANG Guang-wen, YUE Xiang-ji, LIN Zeng. Influence of Cooling Structure on Vacuum Arc Source Temperature [J]. VACUUM, 2022, 59(6): 29-33.
[12] ZHAI Yan-kun, BAI Xue-wei, ZHANG Feng-yu, XU Ming-ze, YUAN Ren-yue, CHEN Jun-yin, HUANG Hai-bo. Research Status on Quality Defect Formation Mechanism, Control Method of High Energy Beam Cladding Coating [J]. VACUUM, 2022, 59(6): 78-86.
[13] WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Effect of Deposition Pressure on Phase Structure and High Temperature Oxidation Behavior of Aluminide Coatings [J]. VACUUM, 2022, 59(5): 20-27.
[14] LIU Yan-wen, MENG Ming-feng, ZHANG Xiao-lin, ZHU Hong, WANG Guo-jian, ZHAO Heng-bang, WANG Xiao-xia, ZHANG Zhi-qiang. Preparation of Molten Heater Assembly [J]. VACUUM, 2022, 59(4): 76-79.
[15] SUN Cheng-kai, LIU Hai-jing, LU Tong-shan, LI Can-lun, LI Zhuo-hui, GAO Ze-tian, WANG Guo-fang. Application Research of High Precision Gradient Temperature Control System [J]. VACUUM, 2022, 59(2): 17-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .