欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (2): 35-41.doi: 10.13385/j.cnki.vacuum.2025.02.05

• Vacuum Acquisition System • Previous Articles     Next Articles

Aerodynamic Optimization Design of Intake Pipe of Centrifugal Vacuum Pump in Confined Space

QI Dawei1, LI Chuanxu2, CHEN Dejiang1, ZHAO Shunhong1   

  1. 1. Hypersonic Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. Chengdu Huaxi Chemical Technology Co., Ltd., Chengdu 610000, China
  • Received:2024-05-29 Online:2025-03-25 Published:2025-03-24

Abstract: Aiming at the problem that the inlet flow of large-scale centrifugal vacuum pump is difficult to distribute uniformly in parallel operation in confined space, the aerodynamic analysis of four-way and five-way inlet pipes of centrifugal vacuum pump is carried out by numerical simulation analysis. The aerodynamic structure with uniform inlet flow, small flow pressure loss and uniform flow distribution is obtained, and it is verified by practical application. The results show that the strategy of dividing intersecting cone into two and then dividing into four is an effective four-way and five-way diversion strategy in confined space. Under the condition that the length of the front and rear air inlet paths is quite different, it is difficult to meet the flow uniformity and flow resistance matching at the same time, so the rectifier is designed to match the flow resistance difference. The practical test results of pressure difference between the main pipeline and inlets of optimized pneumatic structure and their flow rate are consistent with the calculated results, indicating that the design method is effective and feasible.

Key words: confined space, centrifugal vacuum pump, five-way inlet pipe, pneumatic structure

CLC Number:  TH452

[1] 齐大伟, 李伟华, 李传旭, 等. 大型风洞用离心真空泵气动设计[J].真空, 2021, 58(4): 49-53.
[2] 王尚锦. 离心压缩机三元流动理论及应用[M]. 西安:西安交通大学出版社,1991.
[3] CAME P M, ROBINSON C J.Centrifugal compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 1998, 213(2): 139-155.
[4] 卢向银,李振光,乔素兰,等. 新型离心式真空泵在煤化工领域中首次应用[J]. 化工机械,2022,49(1):143-144.
[5] 李佳,李健. 离心真空泵的气动设计探讨[J]. 真空与低温,2013(4):214-218.
[6] 张玉珠,齐智勇. 3万8空分单轴悬臂多级离心压缩机的研制[J]. 风机技术,2011(6):22-25.
[7] 钱炜祺,符松. 弯曲管道内湍流流动的数值模拟[J]. 推进技术,2001,22(2):129-132.
[8] 蔡报炜,王建军. 波浪管内流场与传热及阻力特性数值模拟[J]. 原子能科学技术,2014(7):1194-1199.
[9] 朱冬生,郭新超,刘庆亮. 扭曲管管内传热及流动特性数值模拟[J]. 流体机械,2012,40(2):63-67.
[10] 刘大明. 汽油机缸内气流瞬态运动及近壁面流动特性的实验与模拟研究[D]. 天津:天津大学,2014.
[11] 惠荣娜. 通风管道局部构件阻力系数及减阻方法研究[D]. 西安:西安建筑科技大学,2007:49-51.
[12] 朱正林,徐治皋,辛洪祥. T型三通性能优化[J]. 南京工程学院学报(自然科学版),2007,5(2):60-63.
[13] 陈磊. 弯头耦合三通降阻PIV实验及CFD研究[D].西安:西安建筑科技大学,2009:103-107.
[14] 孟康,程永,肖玲,等. 不同夹角T型三通流动特性的数值研究[J]. 黑龙江科技信息,2010(1):30-31.
[15] 隋洪涛. 精通CFD 动网格工程仿真与案例实战[M].北京:人民邮电出版社,2013.
[16] BARTOSIEWICZ Y, AIDOUN Z, DESEVAUX P, et al.CFD-experiments integration in the evaluation of six turbulence models for supersonic ejectors modeling[C]// Integrating CFD and Experiments Conference. Glasgow, UK, 2003.
[17] WILCOX D C.Turbulence modeling for CFD[M]. California: DCW Industries, Inc., 1998.
[18] 赵瑞,阎超. 超声速复杂流动中湍流模型的性能评估[J]. 北京航空航天大学学报,2011,37(2):202-205.
[19] MENTER F R.Zonal two equation k-ω turbulence models for aerodynamic flows[C]// 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference. Orlando,FL,USA: AIAA, 1993.
[20] MENTER F R.Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994,32(8):1598-1605.
[21] 周俊波,刘洋. FLUENT6.3流场分析从入门到精通[M]. 北京:机械工业出版社,2012.
[22] 王福军. 计算流体动力学分析-CFD原理及应用[M]. 北京:清华大学出版社,2004.
[1] QI Da-wei, CHEN De-jiang, LÜ De-run. Development of a New Centrifugal Vacuum Unit with Large Displacement and High Pressure Ratio [J]. VACUUM, 2024, 61(6): 26-32.
[2] QI Da-wei, LI Wei-hua, LI Chuan-xu, WU Bin, CHEN De-jiang, TANG Zhi-gong. Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel [J]. VACUUM, 2021, 58(4): 49-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .