欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 26-32.doi: 10.13385/j.cnki.vacuum.2024.06.05

• Vacuum Acquisition System • Previous Articles     Next Articles

Development of a New Centrifugal Vacuum Unit with Large Displacement and High Pressure Ratio

QI Da-wei, CHEN De-jiang, LÜ De-run   

  1. Hypersonic Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, China
  • Received:2024-04-09 Online:2024-11-25 Published:2024-11-29

Abstract: With the increasing requirement of the suction efficiency of vacuum pumping equipment in large vacuum system, the suction capacity of traditional Roots vacuum unit is obviously insufficient, which can not meet the application requirements. In this paper, the centrifugal vacuum pump with large displacement, wide pressure and high rotating speed is applied to large-scale high vacuum system, and a new type of centrifugal vacuum unit is developed, which combines centrifugal vacuum pump, Roots vacuum pump and water ring vacuum pump in series. The composition of centrifugal vacuum unit and the development process of this centrifugal vacuum pump is introduced, its extreme performance and load are tested. The results show that the pumping capacity, ultimale pressure and operational stablity of the unit meet the design requirements. This unit has the characteristics of small footprint, high operation efficiency and strong pumping capacity, and is the best pumping scheme for large-scale high vacuum system at present.

Key words: vacuum system, Roots vacuum unit, centrifugal vacuum pump, aerodynamic design

CLC Number:  TH452

[1] LOFTHOUSE A, HUGHSON M, PALAZOTTO A.Computational aerodynamic analysis of the flow field about a hypervelocity test sled[C]// 41st AIAA Aerospace Sciences Meeting & Exhibit. Reno, Nevada:AIAA, 2003.
[2] HEGEDUS M, MENDENHALL M, PERKINS S, et al.Engineering analysis for rocket sled aerodynamics[C]// 44th AIAA Aerospace Sciences Meeting & Exhibit. Reno,Nevada:AIAA, 2006.
[3] 蒲旭阳, 刘伟雄, 李向东, 等. 抽吸排气式高焓风洞应用实验研究[J]. 推进技术, 2018, 39(2): 450-455.
[4] 姜燮昌. 粗真空、中真空获得设备的最新进展与应用[J]. 真空, 2017, 54(3): 1-6.
[5] 侯峰伟, 吴斌, 齐大伟. 高超声速风洞真空保障系统改造[J]. 真空, 2014, 51(5): 36-51.
[6] 王德喜, 隋吉秋, 张世伟, 等. 气冷罗茨真空泵内气体热力过程的计算研究[J]. 真空, 2017, 54(2): 53-57.
[7] 乐嘉陵. 吸气式高超声速技术研究进展[J]. 推进技术, 2010, 31(6): 641-649.
[8] 徐翔, 伍贻兆, 程克明, 等. 高超声速风洞气动布局设计[J]. 南京航空航天大学学报, 2008, 40(2): 271-274.
[9] 王德, 陈延辉. 超燃冲压发动机不启动及试验台扩压器的堵塞[J]. 飞航导弹, 2007 (9): 43-51.
[10] 王尚锦. 离心压缩机三元流动理论及应用[M]. 西安: 西安交通大学出版社,1991.
[11] CAME P M, ROBINSON C J.Centrifugal compressor design[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 1998, 213(2): 139-155.
[12] 齐大伟, 李伟华, 吕德润, 等. 一种大流量高真空抽气系统及其设计方法: CN115434902A[P].2022-12-06.
[13] 翁建武, 周君斐, 罗根松, 等. 罗茨真空泵特性指标及测试方法研究[J]. 真空, 2015, 52(2): 1-5.
[14] 丘宇新. 水环式真空泵的原理和常见故障分析[J]. 中国电力教育, 2010(12): 457-458.
[15] 齐大伟, 李伟华, 李传旭, 等. 大型风洞用离心真空泵气动设计[J] 真空, 2021, 58(4): 49-53.
[16] BURGMANN W, GÖHLER K. Modern vacuum pumps for the vacuum degassing of steel in small and large vacuum-degassing units[J]. Metallurgist, 2013, 57(5-6): 516-525.
[17] ABDELWAHAB A.Design of a moderate speed-high capacity centrifugal compressor with application to PSA and VPSA air separation processes[C]// ASME 2005 Power Conference. Chicago, USA:ASME, 2005:101-108.
[18] 李佳, 李健. 离心真空泵的气动设计探讨[J].真空与低温, 2013(4): 214-218.
[19] 周莉, 席光, 蔡元虎, 等. 离心压缩机进口导叶/叶轮动静相干的数值研究[J]. 航空动力学报, 2007, 22(10): 1715-1721.
[20] 周莉, 蔡元虎. 离心压缩机内进口导叶后面流场的实验研究[J]. 实验流体力学, 2008, 22(1): 17-20.
[21] 刘天一, 王锐, 谭佳健, 等. 改变进气通道结构提高离心压缩机进口导叶调节性能[J]. 流体机械, 2011, 39(8): 19-23.
[22] PALMER D L,WATERMAN W F.Design and development of an advanced two-stage centrifugal compressor[J]. Journal of Turbomachinery, 1995, 117(2):205-212.
[23] BACKMAN J L H,TURUNEN-SAARESTI T,SAARI J. Proto type design of a two-stage high-speed motor driven air compressor[C]//Proceedings of ASME Turbo Expo 2008:Power for Land,Sea and Air. Berlin,Germany:ASME, 2008.
[24] RODGERS C,BROWN D.Performance test diagnosis of a compact two stage high pressure ratio compressor[C]//Proceedings of ASME Turbo Expo 2010:Power for Land,Sea and Air. Glasgow, UK:ASME, 2010.
[25] 闫莹, 肖友洪, 卢华兵, 等. 基于有限元法离心风机气动噪声预报研究[J]. 流体机械, 2022, 50(11):61-68.
[26] 谢星, 王红彪, 李振林, 等. 带分流叶片离心式风机叶轮优化设计[J].流体机械, 2021, 49(10):21-28.
[27] 孙永瑞, 陶琛, 裴威. 降低离心压缩机扩压器高度的定子件优化设计[J]. 流体机械, 2023, 51(5):22-28.
[28] 赵悦, 刘正先, 赵明. 长叶片扩压器稠度对气动性能影响研究[J]. 流体机械, 2019, 47(3):52-57.
[29] 詹黎明, 袁建平, 赵奔, 等. 可变几何楔形扩压器设计与流动分析[J].流体机械, 2023, 51(3):55-63.
[1] ZHANG Wan-fu, LI Qiang, LI Jun, LIU Jia-xue, WANG De-hong, LUO Jun-yi. Analysis and Optimization Applications of Vacuum System for VIDP Furnace During Special Alloy Manufacturing Process [J]. VACUUM, 2024, 61(1): 58-63.
[2] LIU Shun-ming, WANG Peng-cheng, LIU Jia-ming, TAN Biao, SUN Xiao-yang, WANG Yi-gang, ZHU Bang-le, SONG Hong, LI Bo, WU Xiao-lei, LI A-hong. The Vacuum Leakage Solution of CSNS DTL [J]. VACUUM, 2023, 60(3): 55-61.
[3] ZHOU Jia-yi, WANG Pei, ZHANG Zong-feng, WANG Dong, REN Qi-chen, HU Ju-li, HAN Rui, WANG Yun-hu, LU Mao-lei, SUN Zhi-he, DING Huai-kuang. Development of An Apparatus for Material Outgassing Test Under Thermal Vacuum Condition [J]. VACUUM, 2023, 60(2): 39-44.
[4] LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27.
[5] WANG Peng-cheng, SUN Xiao-yang, JING Han-tao, HUANG Tao, LIU Jia-ming, LIU Shun-ming, TAN Biao. The Vacuum System of Back-n at CSNS [J]. VACUUM, 2022, 59(3): 7-11.
[6] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Li-yuan, JIANG Zheng-he. Design of Vacuum Pumping System for Electron Beam Melting Furnace [J]. VACUUM, 2021, 58(5): 42-45.
[7] WANG Jun-ru, YU Yao-wei, CAO Bin, ZHUANG Hui-dong, HU Jian-sheng. Design and Research on the Vacuum System of Material Sputtering Experimental Device for the Fusion First Wall Material [J]. VACUUM, 2021, 58(5): 32-36.
[8] QI Da-wei, LI Wei-hua, LI Chuan-xu, WU Bin, CHEN De-jiang, TANG Zhi-gong. Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel [J]. VACUUM, 2021, 58(4): 49-53.
[9] TAN Biao, HUANG Tao, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, LIU Shun-ming, SUN Xiao-yang, DONG Hai-yi. The Vacuum System of RCS at CSNS [J]. VACUUM, 2021, 58(3): 1-6.
[10] LIU Shun-ming, OUYANG Hua-fu, HU Zhi-liang, SONG Hong, HUANG Tao, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, LIU Sheng-jin, XIAO Yong-chuan, CAO Xiu-xia, LU Yong-jia, XUE Kang-jia, WU Xuan, KANG Ming-tao, BNCT Team. Vacuum System for Boron Neutron Capture Therapy(BNCT) [J]. VACUUM, 2020, 57(6): 64-68.
[11] Alessandro Abatecola. A new high-conductance ion pump for particle accelerator [J]. VACUUM, 2019, 56(1): 16-19.
[12] LUO Wei. Application and analysis of energy saving reform of condenser vacuum system [J]. VACUUM, 2018, 55(6): 37-41.
[13] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering [J]. VACUUM, 2018, 55(5): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .