欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (3): 42-46.doi: 10.13385/j.cnki.vacuum.2025.03.08

• Vacuum Acquisition System • Previous Articles     Next Articles

Study on Volume Utilization Rate of Rotor Profiles of Roots Vacuum Pumps

LI Zhengqing, LI Xiaojin, CHENG Yongjun, SUN Wenjun, YANG Jianbin, LIU Xiaowen, MA Fengying   

  1. Lanzhou Institute of Physics, Lanzhou 730000, China
  • Received:2024-08-26 Online:2025-05-25 Published:2025-05-23

Abstract: Volume utilization rate is one of the important contents of rotor profile for Roots vacuum pumps. In order to select reasonable parameters of rotor profile, the relationship between volume utilization rate and variable parameters of rotor profiles is analyzed, so that the as-designed rotor has the advantages of short length and small volume under the same geometric pumping speed. The results show that the volume utilization rate of the single variable rotor profile is a constant, and the volume utilization rate of two-variable and three-variable profiles increases with the ratio of top and pitch circle radii. When the ratio of top and pitch circle radii can take a larger value, the optimized cycloid and circular arc rotor profiles may be selected. If the value is small, the involute rotor profile is preferred. For the three-variable profile, the volume utilization rate of the top elliptical rotor profile is higher than that of the waist elliptical rotor profile, and the elliptic eccentricity also affects the volume utilization rate. Under the given pumping conditions, a larger rotor radius may be designed to reduce the length and volume of the rotor.

Key words: Roots vacuum pump, rotor profile, volume utilization rate, top circle radius, pitch circle radius

CLC Number:  TB752

[1] JOUSTEN K.Handbook of vacuum technology[M]. 2ed. Baden-Württemberg, Germany: Wiley-VCH, 2015.
[2] ZHOU H M, JIA X H, PENG XY, FNEG J M.The effects of design parameters on performance of a novel roots profile[J]. International Journal of Hydrogen Energy, 2023, 48(6): 2368-2384.
[3] 姜燮昌. 粗真空、中真空获得设备的最新进展与应用[J]. 真空,2017,54(3):1-6.
[4] 李小金,李正清,韩仙虎,等. 基于TRIZ理论的一种提升罗茨真空泵基础压力的设计方法[J]. 真空,2024,61(2):62-67.
[5] 张帅,宋爱平,田德云,等. 罗茨泵转子的轮廓型线设计及仿真[J]. 机械传动,2014,38(3):91-93.
[6] VECCHIATO D, DEMENEGO A, ARGYRIS J, et al.Geometry of a cycloidal pump[J]. Computer in Applied Mechanical Engineering, 2001, 190(18/19): 2309-2330.
[7] LI Z Q, WANG X J.New cycloid rotor profiles design under different rolling circle radii for Roots vacuum pump[J]. SN Applied Sciences, 2022, 4: 280.
[8] HWANG Y W, HSIEH C F.Study on high volumetric efficiency of the Roots rotor profile with variable trochoid ratio[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2006, 220(9): 1375-1384.
[9] 李海洋,赵玉刚,胡柳,等. 渐开线型罗茨真空泵转子型线的改进研究[J]. 机床与液压,2011,39(22):37-39.
[10] 李玉龙. 罗茨泵用高能渐开线新型转子的型线研究[J].机床与液压,2020,48(4):64-66.
[11] 张伟初,吴明亮,李新华,等.三叶罗茨鼓风机宽凸台渐开线叶型设计[J].湖南农业大学学报(自然科学版),2002(2):165-166.
[12] WANG S J, LI H Y, ZHAO Y G, et al.The improvement study of involutes profile type rotor profile in Roots vacuum pump[C]//2011 International Conference on New Technology of Agricultural. Zibo, China: IEEE, 2011: 251-253.
[13] 董笑飚,张仑.罗茨鼓风机圆弧型转子型线方程[J].甘肃工业大学学报,2000,(4):43-47.
[14] 秦丽秋,刘玉岱.罗茨泵圆弧转子型线研究[J].真空,1990, 27(1):32-39.
[15] 叶仲和,林守峰,魏彪. 三叶罗茨鼓风机圆弧型转子型线设计[J]. 风机技术,2000(4):9-12.
[16] 徐文兵,于振华,胡焕林. 偏心圆弧罗茨转子型线的研究[J]. 真空,2006,43(1):6-8.
[17] 李正清,韩仙虎,蔡宇宏,等. 一种腰部为椭圆线的罗茨真空泵转子型线设计与分析[J]. 真空,2024,61(1):47-51.
[18] WANG J, LIU R Q, YANG S R, LI H X, et al.Geometric study and simulation of an elliptical rotor profile for Roots vacuum pump[J]. Vacuum, 2018, 153: 168-175.
[19] 刘瑞青,张凌宏,王君,等. 低压力脉动罗茨真空泵转子的研究[J]. 机械设计与制造,2020(10):129-132.
[20] 杨乃恒. 真空获得设备[M]. 北京:冶金工业出版社,1999.
[21] 胡祖藩. 各种齿型罗茨泵面积利用系数的计算及比较[J]. 流体工程,1989(2):27-35.
[1] WANG Jian-guo, GAO Xun-yi, WANG Chao, LI Jin-jian, ZHANG Bao-fu. Research and Application of a New Type Rotor Profile of Roots Vacuum Pump [J]. VACUUM, 2024, 61(5): 46-50.
[2] WU Jun, WU Jie, GAN Shu-yi, HE Hai-bin, WANG Lei, WU Qing-yun. Recent Theoretical Research Progress in Dry Screw Vacuum Pump [J]. VACUUM, 2024, 61(5): 36-45.
[3] LI Xiao-jin, LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LIU Xiao-wen. A Design Method Based on TRIZ Theory to Enhance the Base Pressure of Roots Vacuum Pump [J]. VACUUM, 2024, 61(2): 62-67.
[4] LI Zheng-qing, HAN Xian-hu, CAI Yu-hong, YANG Jian-bin, LI Xiao-jin, LIU Xiao-wen, WANG Yi. Design and Analysis of a Rotor Profile for Roots Vacuum Pumps with an Elliptical Waist [J]. VACUUM, 2024, 61(1): 47-51.
[5] LI Zheng-qing, WANG Xiao-jun, HAN Xian-hu, CAI Yu-hong, LI Xiao-jin, YANG Jian-bin. Design and Machining of Circular Rotor Profiles for Roots Vacuum Pumps [J]. VACUUM, 2023, 60(1): 36-41.
[6] ZHANG Bao-fu, YU Yang, GAO Xun-yi, LI Jin-jian, WANG Jian-guo, WANG Ling-ling. Application of High Differential Pressure Roots Pump Combination Pumping System for Large Vacuum Distillation Deep Cut Unit [J]. VACUUM, 2022, 59(5): 45-49.
[7] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[8] ZHAI Yun-fei, ZHANG Shi-wei, HAN Feng, ZHAO Fan, XIE Yuan-hua. Thermodynamic calculation for pumping process in the trilobal Roots vacuum pump [J]. VACUUM, 2019, 56(3): 10-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!