欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (4): 81-88.doi: 10.13385/j.cnki.vacuum.2025.04.15

• Vacuum Technology Application • Previous Articles     Next Articles

Natural Vibration Characteristics and Seismic Response Analysis of Vacuum Assisted Steel-Concrete Arch Bridge

CHEN Qiang1,2, ZHANG Wei3, DANG Tao3, JIN Yangtao3, CAO Xueping3   

  1. 1. Shaanxi Polytechnic University, Xianyang 712000, China;
    2. Xianyang Loess Mechanics and Disaster Prevention Engineering Technology Research Center, Xianyang 712000, China;
    3. Shaanxi Huashan Road and Bridge Group Co., Ltd., Xi’an 710026, China
  • Received:2025-02-24 Online:2025-07-25 Published:2025-07-24

Abstract: The application effect of vacuum assisted technology in steel-concrete arch bridges was studied. Based on the construction parameters of a vacuum assisted steel-concrete arch bridge in a certain project, a comprehensive evaluation of the natural frequency, mode shape, and seismic response of the arch bridge was conducted using finite element analysis and experimental testing. The results show that the rise-span ratio and inclination angle of the arch bridge are positively correlated with the natural frequency. The amplification rates under the conditions of rise-span ratio of 1/5 and inclination angle of 14° are approximately 6.6% and 38.5%, respectively. Under the action of seismic waves, the response of arch bridges in the X direction is more obvious. In seismic design, more attention shall be paid to the seismic performance in the X direction. In the construction of vacuum assisted steel-concrete arch bridges, the rise-span ratio should be appropriately reduced and the inclination angle should be adjusted to optimize the structural stiffness of the arch bridge.

Key words: vacuum assisted, steel tube concrete arch bridge, natural vibration characteristics, earthquake response, finite element analysis

CLC Number:  U448

[1] 郭文杰, 柴天建, 颜建伟,等. 基于高斯小波函数和线性表达法的开口板自由振动特性研究[J]. 振动与冲击, 2024, 43(6): 29-37.
[2] 吴宗欢, 王亚波, 李冰冰,等. 任意边界条件下带集中质量的连续多跨梁自振特性分析[J]. 噪声与振动控制, 2024, 44(1): 52-58.
[3] 王亚波, 马乾瑛, 吴宗欢. 基于传递矩阵法的Timoshenko裂纹梁自振特性分析[J]. 计算力学学报, 2024, 41(5): 909-914.
[4] 张佳伟, 王博, 刘扬,等. 长周期地震动作用特性及其对RC柱抗震性能的影响研究[J]. 地震工程与工程振动, 2023, 43(5): 191-203.
[5] 杨春侠, 张梓建, 崔鸿知,等. 索桁架柔性光伏支架结构自振特性及地震时程响应分析[J]. 建筑结构, 2023, 53(增刊1): 722-729.
[6] 张尚荣, 邓海瑞, 胡宇琛,等. 考虑SSI效应的层间隔震结构自振特性及随机响应分析[J]. 地震工程学报, 2023, 45(3): 651-660.
[7] 张焱辉, 李百丰, 邓婷,等. 基于几何非线性圆拱动力模型的拱形温室自振周期分析[J]. 中国农业大学学报, 2023, 28(5): 220-228.
[8] 荣学亮, 欧阳靖, 焦明伟,等. 单箱双室变截面波形钢腹板组合连续箱梁自振特性试验研究[J]. 铁道建筑, 2022, 62(12): 123-128.
[9] 郭佳丽, 张庆凯, 张军强,等. 建筑装饰用GF/EHP材料真空辅助成型制备及其力学性能分析[J]. 真空科学与技术学报, 2021, 41(8): 789-793.
[10] 杨舟, 冯青松, 邓杰,等. 采用高斯展开法分析组合式开口矩形Mindlin板的弯曲自振特性[J]. 振动工程学报, 2022, 35(5): 1130-1137.
[11] ZOU Y N, LIU Z D, TIAN C J, et al.Dynamic response analysis of concrete filled steel tube tied arch bridge on a slab foundation under moving train load[J]. Frontiers in Built Environment,2024,15(10):1498790.
[12] 李永飞. 水泥混凝土路面施工中真空灌浆技术的应用研究[J].交通科技与管理,2024,5(1):89-91.
[13] 韩玉. 钢管拱桥管内混凝土真空辅助灌注试验及实桥应用[J].桥梁建设,2015,45(2):19-25.
[14] 沈正璇, 徐略勤, 史俊,等. 大跨上承式拱桥拱上建筑碰撞效应多尺度模拟研究[J]. 自然灾害学报, 2024, 33(2): 175-186.
[15] 韩强, 王朝进, 吴睿麒,等. 基于多尺度模型的空间Y型拱桥抗震性能分析[J]. 世界地震工程, 2023, 39(3): 183-193.
[16] 李子奇, 李亮亮, 王力,等. 脉冲参数对CFST拱桥地震反应的影响[J]. 中国安全生产科学技术, 2022, 18(9): 225-231.
[17] 龚浩, 张洪豪, 徐略勤,等. 近断层地震动对上承式拱桥动力响应的影响[J]. 世界地震工程, 2022, 38(3): 117-126.
[18] 徐略勤, 张令, 龚浩. 大跨钢管混凝土系杆拱桥考虑桩-土作用的近断层地震响应研究[J]. 重庆交通大学学报(自然科学版), 2021, 40(10): 63-72.
[19] 王建军,谢灿荣,何建乔,等.大跨径钢管混凝土拱桥管内混凝土施工质量分析与评估[J].公路, 2023,68(11):172-175.
[20] YAN X K, LIU Y J, LIU J, et al.Experimental and numerical investigation on vertical temperature gradient of concrete-filled steel tubular arch under sunlight[J]. Structures, 2024,70:107550
[21] 刘家兴,黄树荣.560 m大跨径钢管混凝土拱桥拱肋灌注技术及质量检测[J].公路, 2023, 68(9):223-228.
[22] 冯佳. 深切峡谷上承式钢管混凝土拱桥地震响应分析[J].公路交通技术,2024,40(3):62-67.
[23] 陈利. 近断层地震作用下上承式钢管混凝土拱桥地震响应影响研究[J].铁道建筑技术, 2023(12):129-135.
[24] 曾宪帅. 近场地震动作用下劲性骨架混凝土拱桥地震响应分析[J].中国新技术新产品, 2023(8):95-97.
[25] XIE W W, ZHOU X H, QIN D Y, et al.Prediction of construction cable forces of CFST arch bridge based on DNN[J].Structures, 2024, 61:106102.
[26] 毛燕,韩旭,李鹏飞,等.地震荷载作用下钢管混凝土拱桥的动力稳定分析方法[J].公路,2023,68(3):219-225.
[27] 张季伟,杜轲.大跨度上承式钢管混凝土拱桥抗震韧性评估[J].地震研究, 2024, 47(1):37-50.
[28] 陆相林. 下承式钢管混凝土拱桥自振特性敏感性分析[J].黑龙江交通科技, 2024, 47(6):59-62.
[1] MA Yuanchen, LI Zhongren, WANG Ying, AI Chunjiang, SONG Jiaxing, ZHANG Wang, HU Yongjia. Optimization of Pre-Stressed Vessel Winding and Numerical Simulation for Hot Isostatic Pressing [J]. VACUUM, 2025, 62(4): 39-43.
[2] ZENG Huan, DENG Jia-liang, SUN Zhi-he. Design of the 250mm Caliber Cryopump [J]. VACUUM, 2020, 57(2): 13-16.
[3] SUN Zhi-ming, HE Chao, ZHANG Ying-li, ZHU Zhi-peng, YUE Xiang-ji, ZHANG Bin, BA De-chun. Design and finite element analysis of large-scale horizontal vacuum container [J]. VACUUM, 2019, 56(2): 26-30.
[4] SHEN Fu-bo, WANG Jie, ZHAI Yue, ZHOU Zhi-peng. Light shell design of low temperature adsorption bed and its optimization [J]. VACUUM, 2018, 55(6): 42-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .