欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (4): 6-10.doi: 10.13385/j.cnki.vacuum.2020.04.02

• Thin Film • Previous Articles     Next Articles

Analysis of Feasibility for Diamond Like Carbon Films Using as Negative Hydrogen Ions Surface Conversion Materials

LI Jian1,2, TONG Hong-hui1, DAN Min1, JIN Fan-ya1, WANG Kun1,2, CHEN Lun-jiang1   

  1. 1. Southwestern Institute of Physics, Chengdu 610041, China;
    2. Engineering and Technical College of Chengdu University of Technology, Leshan 614007, China
  • Received:2019-12-09 Online:2020-07-25 Published:2020-07-23

Abstract: Negative hydrogen ions sources are the preferred ions sources of the neutral beam injection system for the fusion apparatus, in which perfect negative hydrogen ion surface conversion material is the key problem. Diamond films have perfect secondary electron emission properties because of its negative electron affinity. In this article, the structures, working process and modes of H- ions sources are introduced. The theory of secondary electron emission of diamond films and methods for enhancing the secondary electron emission properties are summarized. The feasibility of diamond like carbon films using as negative hydrogen ions surface conversion materials is analyzed. Diamond like carbon films have both diamond phase and graphite phase, which lead to the good electrical and electron emission properties. Therefore, in the future negative hydrogen ions source, it is expected that the diamond films may be the promising and optional surface conversion materials.

Key words: nuclear fusion, negative hydrogen ions sources, surface conversion materials, diamond like carbon films, filter cathode vacuum arc

CLC Number: 

  • O535
[1] Takeiri Y, Kaneko O, Tsumori K, et al.High-power and long-pulse injection with negative-ion-based neutral beam injectors in the Large Helical Device[J]. Nuclear Fusion, 2006, 46: S199-S210.
[2] Hruba M.Achievement of 500 keV negative ion beam acceleration on JT-60U negative ion based neutral beam injector[J]. Nuclear Fusion, 2011, 51(8): 1465-1474.
[3] Hemsworth R, Decamps H, Graceffa J, et al.Status of the ITER heating neutral beam system[J]. Nuclear Fusion, 2009, 49(4): 571-576.
[4] Staebler A, Fantz U, Franzen P, et al.Development of a RF-driven ion source for the ITER NBI system[J]. Fusion Engineering & Design, 2009, 84(2): 265-268.
[5] 林树豪. 负氢离子源研究[D]. 兰州: 中国科学院近代物理研究所, 2014.
[6] Schiesko L, Cartry G, Hopf C, et al. First experiments with Cs doped Mo as surface converter for negative hydrogen ion sources[J]. Journal of applied physics, 2015, 118: 073303-1-10.
[7] Schiesko L, Cartry G, Hopf C, et al. Cs-doped Mo as surface converter for H-/D- generation in negative ion sources: first steps and proof of principle[C]. Fourth international symposium on Negative Ions, Beams and Sources (NIBS), 2014: 02003-1-5.
[8] Dudnikov V, Schmidt C W, Hren R, et al. Compact surface plasma H- ion source with geometrical focusing [J]. Review of Scientific Instruments, 2016, 87: 02B101-1-8.
[9] Yu. Belchenko.Surface negative ion production in ion sources[J]. Review of Scientific Instruments 1993, 64: 1385-1393.
[10] Dudnikov V, Belchenk Y I, Dimov G I, et al.Powerful injector of neutrals with a surface-plasma source of negative-ions[J]. Nuclear Fusion, 1974, 14(1): 113-114.
[11] Belchenko Y I, Derevyankin G E, Dimov G I, et al.Studies of surface-plasma negative ion sources at Novosibirsk[J]. Journal of Applied Mechanics & Technical Physics, 1987, 28(4): 568-576.
[12] Kumar P, Ahmad A, Pardanaud C, et al.Enhanced negative ion yields on diamond surfaces at elevated temperatures[J]. J. Phys. D: Appl. Phys. , 2002, 44(37): 1-4.
[13] Schiesko L, Carrère M, Cartry G, et al. H- production on a graphite surface in a hydrogen plasma[J]. Plasma Sources Sci. Technol, 2008, 17: 035023-1-6.
[14] Belchenko Y I, Kuznetsov G I, Grigoryev E A.Hydrogen negative ion source with LaB6 inserts[J]. Review of Scientific Instruments, 2000, 71: 1079-1081.
[15] Gutser R, Wimmer C, Fantz U. Work function measurements during plasma exposition at conditions relevant in negative ion sources for the ITER neutral beam injection [J]. Review of Scientific Instruments2011, 82: 023506-1-7.
[16] Okumura Y, Fujiwara Y, Kashiwagi M, et al.Negative hydrogen ion source for TOKAMAK neutral beam injector(invited)[J]. Review of Scientific Instruments, 2000, 71: 1219-1224.
[17] Schieskoa L, Carrère M, Layet J M, et al. Negative ion surface production through sputtering in hydrogen plasma [J]. Appl. Phys. Lett., 2009, 95: 191502-1-3.
[18] Yater J E, Shaw J L, Jensen K L, et al.Secondary electron amplification using single-crystal CVD diamond film[J]. Diamond and Related Materials, 2011, 20(5-6): 798-802.
[19] Yater J E, Shih A, Butler J E, et al.Electron transmission studies of diamond films[J]. Applied Surface Science, 2002, 191(1-4): 52-60.
[20] 李建, 童洪辉, 但敏, 等. 场致发射电子源的应用及其研究进展[J]. 真空, 2019, 56(3): 27-31.
[21] 李建, 童洪辉, 但敏, 等. 负氢离子源负氢离子表面转化材料发展现状分析[J]. 真空科学与技术学报, 2018, 38(11): 963-967.
[22] 李建, 刘艳红, 俞士吉, 等. 等离子体技术在碳氮膜制备中的应用[J]. 真空, 2004, 41(2): 8-13.
[23] Liu Y H, Li J, Liu D P, et al.Properties and deposition processes of a-C: H films from CH4 /Ar dielectric barrier discharge plasmas[J]. Surface & Coatings Technology, 2006, 200(20): 5819-5822.
[24] 刘艳红, 张家良, 王卫国, 等. CH4或CH4+Ar介质阻挡放电中的离子能量和类金刚石膜制备[J]. 物理学报, 2006, 55(3): 1458-1463.
[25] 刘艳红, 李建, 马腾才. C基膜电子场发射的一般特性及发射模型[J]. 真空, 2004, 41(1): 16-21.
[26] 林祖伦, 王小菊. 阴极电子学[M]. 北京: 国防工业出版社, 2013: 218-249.
[27] 高金海, 姚宁, 张兵临, 等. 类球状微米金刚石聚晶的场发射[J]. 发光学报,2008, 29(2): 393-396.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .