欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (6): 34-39.doi: 10.13385/j.cnki.vacuum.2022.06.06

• Thin Film • Previous Articles     Next Articles

Advances in Tantalum Nitride Resistors Thin Film Materials

YANG Zhao1,2, FU Zhen-xiao1,2, TA Shi-wo1,2, WANG Xin-hao1,2, YAO Ri-hui3, NING Hong-long3   

  1. 1. Guangdong Fenghua Advanced Technology Holding Co., Ltd., Zhaoqing 526060, China;
    2. State Key Laboratory of Advanced Materials and Electronic Components, Zhaoqing 526060, China;
    3. School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
  • Received:2022-02-24 Online:2022-11-25 Published:2022-12-05

Abstract: Tantalum-nitrogen compound thin film materials have the advantages of small resistance temperature coefficient, high chemical stability, good power tolerance and wide adjustable resistance range, which are the preferred materials for high performance resistive thin films. This paper reviews the research progress of tantalum-nitrogen compound functional thin film materials, and explores the core influencing factors for obtaining high performance thin film resistance from the preparation process parameters, post-processing methods, microscopic phase structure and element doping of the materials. Combined with the domestic and international research status, the continued development of tantalum-nitrogen compound thin film resistance is analyzed. In conclusion,tantalum-nitrogen compound thin films have become one of the keys to the development of electronic functional materials, and improving the film quality through element doping and post-treatment will be important means to further expand their application fields.

Key words: electronic functional film, tantalum nitride, thin film resistance, physical phase

CLC Number: 

  • TN304
[1] 张丽娟, 王芳, 孙承松, 等. 高稳定Ni-Cr薄膜电阻的研究[J]. 微处理机, 2005, 26(4): 7-8.
[2] 王峰, 陈桂梅, 张丽, 等. 溅射Ni-Cr薄膜电阻的研究[C]//第十三届全国电子束, 离子束, 光子束学术年会. 长沙: 中国电子学会, 2005.
[3] 黄桂荣, 何小琦, 曾自力. 国内外碳膜电阻器对比分析的研究[C]//中国电子学会电子产品可靠性与质量管理学会第三届学术年会. 九江: 中国电子学会电子产品可靠性与质量管理学会, 1985.
[4] MENDIZABAL L, LOPEZ A, BAYÓN R, et al. Tribocorrosion response in biological environments of multilayer TaN films deposited by HPPMS[J]. Surface and Coatings Technology, 2016, 295: 60-69.
[5] LIU K Y, LEE J W, WU F B.Fabrication and tribological behavior of sputtering TaN coatings[J]. Surface and Coatings Technology, 2014, 259: 123-128.
[6] MA G J, LIN G Q, GONG S L, et al.Mechanical and corrosive characteristics of Ta/TaN multilayer coatings[J]. Vacuum, 2013, 89(3): 244-248.
[7] CHEN H R, CHEN Y C, CHANG T C, et al, The manipulation of temperature coefficient resistance of TaN thin-film resistor by supercritical CO2 fluid[J]. IEEE Electron Device Letters, 2015, 36(3): 271-273.
[8] 梅显秀, 王煜明. 离子束辅助沉积制备氮化钽薄膜[J]. 大连理工大学学报, 1995, 35(5): 623-627.
[9] 胡南山. 高频反应溅射氮化钽铝薄膜[J]. 电子元件与材料, 1983(4): 74-78.
[10] 张德元, 林勤, 陆德平, 等. 钽表面渗氮层的氧化行为[J]. 中国表面工程, 2000, 13(3): 25-27.
[11] FU B, GAO L.Tantalum nitride/copper nanocomposite with zero temperature coefficient of resistance[J]. Scripta Materialia, 2006, 55(6): 521-524.
[12] 刘飞飞, 唐云, 张万里, 等. 热处理对TaN薄膜电性能的影响[J]. 电子元件与材料, 2011, 30(2): 47-49.
[13] 贾振宇, 朱嘉琦, 曹世成. 反应磁控溅射制备氮化钽扩散阻挡层的研究[J]. 真空科学与技术学报, 2012, 32(8): 96-102.
[14] CAO Q T, SONG Z M, WANG F, et al.Failure analysis of TaN thin film resistors for microwave circuits[C]// Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits(IPFA). Suzhou: IEEE, 2013: 749-753.
[15] 梁军生, 陈亮, 王金鹏, 等. 磁控溅射制备氮化钽导电薄膜及其性能研究[J]. 电子元件与材料, 2018, 37(8): 36-39.
[16] 谢贵久, 周国方, 何峰, 等. 氮化钽薄膜压力传感器研究[J]. 微处理机, 2018, 39(2): 13-15.
[17] 杨俊锋, 丁明建, 冯毅龙, 等. 退火温度对氮化钽薄膜电阻器性能的影响[J]. 广州化工, 2018, 46(14): 49-52.
[18] 陈国平, 徐敏生, 邵力为. 氮化钽薄膜稳定性的研究[J]. 真空科学与技术, 1988(1): 45-48.
[19] 邹文秀. 氮化钽薄膜电阻器性能的研究[J]. 电子元件与材料, 1985(2): 12-16.
[20] 王超杰, 蒋洪川, 张万里, 等. 氮流量对TaN薄膜微结构及性能的影响[J]. 功能材料与器件学报, 2010, 16(1): 85-88.
[21] 杨文茂, 张琦, 陶涛, 等. 非平衡磁控溅射沉积Ta-N薄膜的结构与电学性能研究[J]. 功能材料, 2006, 37(10): 1593-1595.
[22] 周平贤, 刘兴钊, 李言荣. 磁控溅射Ta-N薄膜的结构和电性能[C]//航空试验测试技术峰会. 南昌: 中国航空学会, 2008, 27: 322-324.
[23] 冷永祥, 黄楠, 杨萍. 氮化钽薄膜的制备与结构研究[J]. 材料工程, 1998(9): 19-21.
[24] NIE H, XU S, WANG S, et al.Structural and electrical properties of tantalum nitride thin films fabricated by using reactive radio-frequency magnetron sputtering[J]. Applied Physics A, 2001, 73(2): 229-236.
[25] CHUNG G S.Characteristics of tantalum nitride thin film strain gauges for harsh environments[J]. Sensors and Actuators, 2007, 135(2): 355-359.
[26] SHEN H, RAMANATHAN R.Fabrication of a low resistivity tantalum nitride thin film[J]. Microelectronic Engineering, 2006, 83(2): 206-212.
[27] STAVREV M, FISCHER D, WENZEL C, et al.Crystallographic and morphological characterization of reactively sputtered Ta, Ta-N and Ta-N-O thin films[J]. Thin Solid Films, 1997, 307(1/2): 79-88.
[28] 蒋洪川, 向阳, 王超杰, 等. 热处理对TaN薄膜微结构及电性能的影响[J]. 材料导报, 2008, 22(12): 266-268.
[29] STAMPFL C, FREEMAN A J.Stable and metastable structures of the multiphase tantalum nitride system[J]. Physical Review B, 2005, 71(2): 024111.
[30] SHIN-ICHI N, MASASHI N, TADAHIRO O.Thin and low-resistivity Tantalum Nitride diffusion barrier and giant-grain Copper interconnects for advanced ULSI metallization[J]. Japanese Journal of Applied Physics, 1999, 38: 2401-2405.
[31] ZAMAN A, SHEN Y, MELETIS E I.Microstructure and mechanical property investigation of TaSiN thin films deposited by reactive magnetron sputtering[J]. Coatings, 2019, 9(5): 338.
[32] 曲喜新. 现代电阻薄膜[J]. 电子元件与材料, 1995, 14(4): 1-9
[33] SHIN C S, KIM Y W, GALL D, et al.Phase composition and microstructure of polycrystalline and epitaxial TaNx layer grown on oxidized Si(001)and MgO(001)by reactive magnetron sputter deposition[J]. Thin Solid Films, 2002, 402(1/2): 172-182.
[34] 王磊. TaN薄膜及高频大功率薄膜负载设计与制备研究[D]. 成都: 电子科技大学, 2013.
[35] 蒋洪川, 王超杰, 张万里, 等. 掺Al对TaN薄膜微结构及电性能的影响[J]. 电子科技大学学报, 2010, 39(3): 440-442.
[36] 牛旭博, 张怀武, 黄子宽. Cu掺杂对TaN薄膜的电性能影响研究[J]. 压电与声光, 2014, 36(3): 409-411.
[37] WANG C M, HSIEH J H, FU Y Q, et al.Electrical properties of TaN-Cu nanocomposite thin films[J]. Ceramics International, 2004, 30(7): 1879-1883.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .