欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (1): 62-70.doi: 10.13385/j.cnki.vacuum.2023.01.11

• Measurement and Control • Previous Articles     Next Articles

Research Advances on Space Charge Limiting Current of Equivalent Diode for Tetrode

WU Rong-yan1, WU Ya-xin2, ZHOU Jian-liang3, YANG Pu-qiong1, WU Hong-hu4, CHEN Rong-cai4   

  1. 1. School of Electrical Engineering, University of South China, Hengyang 421001, China;
    2. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    3. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China;
    4. Chengdu Xuguang Electronics Co., Ltd., Chengdu 610500, China
  • Received:2022-04-15 Online:2023-01-25 Published:2023-02-07

Abstract: Due to the advantages of clean and environmentally friendly,abundant raw material reserves,safety and reliability,and no nuclear waste,sustainable green energy nuclear fusion has become an important choice to solve energy and environmental problems in future.However,achieving controlled nuclear fusion is not easy.Tokamak is the most promising magnetic confinement device to realize controllable fusion energy.High power vacuum launch tube is an important component in the Tokamak device.As an important index of the limit parameter and rated power of the transmitting tube,its current depends on the structure,size,material of the transmitting tube itself.The structure and working principle of the tetrode are very complex,so it is very difficult to obtain the variation of emission current with its structural parameters.Therefore,the tetrode can be equivalent to diode structure to explore the law of space charge limited current of diode changing with its geometric structure.The results can provide reference and theoretical basis for the structure design and optimization of the plasma heating transmitting tube.At present,there are many analyzing methods and special simulation software,and they have been widely used in the space charge limiting current.In this regard,by reviewing the related literature and books,the research status of the space charge limited current of the diode at domestic and overseas are summarized and analyzed,and the development tendency is prospected.

Key words: nuclear fusion, transmitting tube, vacuum diode, space charge limited current, thermionic emission

CLC Number: 

  • TL62+6
[1] 张珈珲. EAST上离子回旋天线与等离子的耦合研究[D]. 合肥: 中国科学技术大学, 2017.
[2] 童瀛. 中国能源安全现状问题及对策浅析[J]. 能源与节能, 2013(11): 15-17.
[3] 李耀华, 孔李. 发展太阳能和风能发电技术加速推进我国能源转型[J]. 中国科学院院刊, 2019, 34(4): 426-432.
[4] 王欣, 唐萁, 谢文超, 等. 促进我国海洋可再生能源发展的政策路线研究[J]. 海洋开发与管理, 2016, 33(6): 79-83.
[5] 张百良, 王吉庆, 徐桂转, 等. 中国生物能源利用的思考[J]. 农业工程学报, 2009, 25(9): 226-231.
[6] 陈照. EAST离子回旋共振加热相位和功率控制系统的研究[D]. 合肥: 中国科学技术大学, 2017.
[7] 杨磊. EAST离子回旋共振加热数据与信息管理系统的设计与实现[D]. 合肥: 中国科学技术大学, 2016.
[8] 杨青巍, 丁玄同, 严龙文, 等. 受控热核聚变研究进展[J]. 中国核电, 2019, 12(5): 507-513.
[9] 张微, 杜广, 徐国飞. 中国核聚变研究现状与发展趋势[J]. 科技视界, 2019(5): 148-150.
[10] 肖敏, 吴斌, 钟国强, 等. EAST 中性束注入下快离子输运行为的研究[J]. 核技术, 2020, 43(6): 95-102.
[11] 赵祥学. 稳态中性束注入器束偏转系统研究与优化设计[D]. 合肥: 中国科学技术大学, 2016.
[12] 阳璞琼, 刘波, 蒋才超, 等. 大功率射频离子源驱动器等效阻抗特性分析[J]. 核技术, 2021, 44(8): 91-96.
[13] 杨祥林, 徐淦卿, 韦钰. 微波电子管原理[M]. 北京: 国防工业出版社, 1980: 4-17.
[14] 魏明. 超大功率发射管DB935的研制[D]. 成都: 成都电子科技大学, 2006.
[15] 廖复疆, 吴固基. 真空电子技术[M]. 北京: 国防工业出版社, 1999.
[16] 郭亚明, 刘志飞, 朱自文, 等. 大功率电子管的结构设计与计算工程[M]. 北京: 中国广播影视出版社, 2016: 10-11.
[17] KWAK J G, WANG S J, BAE Y D, et al.Development of high power long-pulse RF transmitter for ICRF heating in fusion researches and cyclotron accelerator[J]. Fusion Engineering and Design, 2011, 86(6): 938-941.
[18] 徐淦卿, 陈德森. 电子管[M]. 上海: 上海科学技术出版社, 1963.
[19] BARKER R J, SCHAMILOGLU E.高功率微波源与技术[M]. 《高功率微波源与技术》翻译组, 译. 北京: 清华大学出版社, 2005.
[20] 曹占国. 基于PIC方法对真空二极管放电特性的研究[D]. 保定: 华北电力大学, 2019.
[21] 万翔. 触发型真空弧粒子源放电特性研究[D]. 绵阳: 中国工程物理研究院, 2014.
[22] BISWAS D, KUMAR R, PURI R R.Absence of saturation for finite injected currents in axially symmetric cavity diode[J]. Physics of plasmas, 2003, 10(11): 4521-4529.
[23] 电子管设计手册编辑委员会. 发射管设计手册[M]. 北京: 国防工业出版社, 1980: 43-96.
[24] CHILD C D.Discharge from hot CaO[J]. Physical Review, 1911, 32(5): 492-511.
[25] LANGMUIR I.The Effect of space charge and residual gases on thermionic currents in high vacuum[J]. Physical Review, 1913, 2(6): 450-486.
[26] LANGMUIR I, BLODGETT K.Currents limited by space charge between coaxial cylinders[J]. Physical Review, 1923, 22(4): 347-356.
[27] LANGMUIR I, BLODGETT K.Currents limited by space charge between concentric spheres[J]. Physical Review, 1924, 24(1): 49-59.
[28] LUGINSLAND J W, LAU Y Y, UMSTATTD R J, et al.Beyond the Child-Langmuir law: a review of recent results on multidimensional space-charge-limited flow[J]. Physics of Plasmas, 2002, 9(5): 2371-2376.
[29] FENG Y, VERBONCOEUR J P, LIN M C, et al.Solution for space charge limited field emission current densities with injection velocity and geometric effects corrections[J]. Physics of Plasmas, 2008, 15(4): 043301-043305.
[30] ZHANG Y H, CHANG A B, FEI X, et al.Repetition rate of intense current electron-beam diodes using 20 GW pulse source[J]. Acta Physica Sinica, 2007, 56(10): 5754-5457.
[31] 左应红, 王建国, 朱金辉. 基于库伦定律的二极管空间电荷限制效应研究[J]. 物理学报, 2012, 61(16): 342-347.
[32] ZUBER J D, JENSEN K L, SULLIVAN T E.An analytical solution for microtip field emission current and effective emission area[J]. Journal of Applied Physics, 2002, 91(11): 9379-9384.
[33] RAVI M, BHAT K S, KHANEJA M, et al.Effective emission area calculation for single tip CNT cathode[C]// 2011 International Vacuum Electronics Conference(IVEC). Bangalore: IEEE, 2011.
[34] SHESTERKIN V I.Effective emission area of multiple-tip autoemission matrices made of glassy carbon[J]. Journal of Communications Technology and Electronics, 2014, 59(8): 788-793.
[35] MILLER R, LAU Y Y, BOOSKE J H, et al.Electric field distribution on knife-edge field emitters[J]. Physical Review Letters, 2007, 91(7): 074105.
[36] SUN S, ANG L K.Onset of space charge limited current for field emission from a single sharp tip[J]. Physics of Plasmas, 2012, 19(3): 033107.
[37] SUN S, ANG L K.Analysis of nonuniform field emission from a sharp tip emitter of Lorentzian or hyperboloid shape[J]. Journal of Applied Physics, 2013, 113(14): 144902.
[38] ZHU Y B, ANG L K.Space charge limited current emission for a sharp tip[J]. Physics of Plasmas, 2015, 22(5): 052106.
[39] BISWAS D.Field-emission from parabolic tips: current distributions,the net current,and effective emission area[J]. Physics of Plasmas, 2018, 25(4): 043105.
[40] BISWAS D.A universal formula for the field enhancement factor[J]. Physics of Plasmas, 2018, 25(4): 043113.
[41] 郝建红, 曹占国, 周前红. 轴对称真空二极管空间电荷限制流[J]. 强激光与粒子束, 2018, 30(12): 43-48.
[42] LUGINSLAND J W, LAU Y Y, GILGENBACH R M.Two-dimensional Child-Langmuir law[J]. Physical Review Letters, 1996, 77(22): 4668-4670.
[43] LAU Y Y.Simple theory for the two-dimensional Child- Langmuir law[J]. Physical Review Letters, 2001, 87(27): 278301.
[44] KOH W S, ANG L K, KWAN T J T. Three-dimensional Child-Langmuir law for uniform hot electron emission[J]. Physics of Plasmas, 2005, 12(5): 053107.
[45] RAGAN-KELLEY B, VERBONCOEUR J, FENG Y.Two-dimensional axisymmetric Child-Langmuir scaling law[J]. Physics of Plasmas, 2009, 16(10): 103102.
[46] KOSTOV K G, BARROSO J J.Space-charge-limited current in cylindrical diodes with finite-length emitter[J]. Physics of Plasmas, 2002, 9(3): 1039-1042.
[47] YANG Z F, LIU G Z, SHAO H, et al.Relativistic solutions for one-and two-dimensional space-charge limited current in coaxial diode[J]. Physics of Plasmas, 2013, 20(5): 053103.
[48] NEIRA E, VEGA F.Solution for the space-charge-limited current in coaxial vacuum diodes[J]. Physics of Plasmas, 2017, 24(5): 052117.
[49] 刘国治. 二极管空间电荷限制流修正[J]. 强激光与粒子束, 2000, 12(3): 375-378.
[50] 邵浩, 刘国志, 宋志敏, 等. 向内发射同轴型二极管电流电压关系二维修正[J]. 强激光与粒子束, 2001, 13(5): 631-636.
[51] 李永东, 何峰, 刘纯亮. 轴对称平板二极管空间电荷限制流的2维效应[J]. 强激光与粒子束, 2005, 17(6): 913-916.
[52] 吴荣燕, 周剑良, 阳璞琼. 热电子发射同轴二极管几何结构对空间电荷限制流的影响[J]. 原子能科学技术, 2021, 55(8): 1516-1522.
[53] WU R Y, ZHOU J L, WU Y X.Investigation of quantitative relation between the Π cathode structure of cylindrical diode and current of cathode[J]. IEEE Transactions on Plasma Science, 2021, 49(9): 2757-2764.
[54] 胡权. 微波管电子光学系统数值模拟及CAD技术研究[D]. 成都: 成都电子科技大学, 2011.
[55] UMSTATTD R J, LUGINSLAND J W.Two-dimensional space-charge-limited emission: beam-edge characteristics and applications[J]. Physical Review Letters, 2001, 87(14): 145002.
[56] ROKHLENKO A, LEBOWITZ J L.Space-charge-limited 2D electron flow between two flat electrodes in a strong magnetic field[J]. Physical Review Letters, 2003, 91(8): 085002.
[57] 刘大刚, 祝大军, 周俊, 等. 3维电磁粒子模拟程序设计[J]. 强激光与粒子束, 2006, 18(1): 110-114.
[58] 丁未. 140GHz回旋振荡管谐振腔的并行三维粒子模拟研究[D]. 成都: 电子科技大学, 2016.
[59] 刘光辉, 宋宜梅, 刘海浪, 等. 基于CST粒子工作室的熔炼电子枪发生系统的仿真[J]. 桂林电子科技大学学报, 2016, 36(2): 144-147.
[60] SPACHMANN H, BECKER U.Electron gun simulation with CST particle studio[J]. Nuclear Instruments and Methods in Physics Research, 2006, 558(1): 50-53.
[61] SAFI D, BIRTEL P, MEYNE S, et al.A traveling-wave tube simulation approach with CST particle studio[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2257-2263.
[62] TIAN H W, LU Z G, SHAO W, et al.3-D fast nonlinear simulation for beam-wave interaction of sheet beam traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2019, 66(3): 1504-1511.
[63] LANGELLOTTI S V, JORDAN N M, LAU Y Y, et al.CST particle studio simulations of coaxial multipactor and comparison with experiments[J]. IEEE Tansactions on Plasma Science, 2020, 48(6): 1942-1949.
[64] PACKARD D A, COOLEYBECK A, JORDAN N M, et al.HFSS and CST simulations of a GW-class MILO[J]. IEEE Tansactions on Plasma Science, 2020, 48(6): 1894-1901.
[65] 周俊. 电磁粒子模拟方法及其应用研究[D]. 成都: 成都电子科技大学, 2009.
[66] 邵福球. 等离子体粒子模拟[M]. 北京: 科学出版社, 2002.
[67] 王闽. 等离子体物理及其计算机模拟[M]. 西安: 陕西科学技术出版社, 1993.
[68] DAWSON J M.Thermal relaxation in a one-species, one-dimensional plasma[J]. Physics of Fluids, 1964, 7(3): 419-425.
[69] GOPLEN B, LUDEKING L, SMITHE D, et al.Magic user′s manual[M]. Newington, VA: Mission Researh Corp., 1991.
[70] BIRMAN K, COOPER R, JOSEPH T, et al.The ISIS system manual, version 1.2[M]. New York: Cornell University, 1989.
[71] VERBONCOEUR J P, LANGDON A B, GLADD N T.An object-oriented electromagnetic PIC code[J]. Computer Physics Communications, 1995, 87(1): 199-211.
[72] 周俊, 刘大刚, 刘盛纲, 等. 面向对象的粒子模拟 CAD 建模系统[J]. 电子学报, 2008, 36(3): 556-561.
[73] GOPLEN B, LUDEKING L, SMITHE D, et al.User configurable MAGIC for electromagnetic PIC calculations[J]. Computer Physics Communications, 1995, 87(1): 54-86.
[74] CST studion suite user′s manual[Z].CST studion suite user′s manual[Z]. Dassault Systèmes, 2020.
[75] TARAKANOV V P.User′s manual for code KARAT[M]. Springfield, VA, USA: Berkley Res., 1999.
[76] MARDAHL P, GREENWOOD A, MURPHY T, et al.Parallel performance characteristics of ICEPIC[C]//User Group Conference. Bellevue, WA, USA: IEEE, 2003: 86-90.
[77] COCO S, EMMA F, LAUDANI A, et al.COCA: a novel 3-D FE simulator for the design of TWTs multistage collectors[J]. IEEE Trans. Electron Devices, 2001, 48(1): 24-31.
[78] 殷勇, 祝大军, 刘盛纲, 等. 35GHz, TE021回旋速调管的电磁模拟[J]. 电子学报, 2005, 33(6): 1024-1027.
[79] 吴荣燕. 四极管等效二极管阴极结构与电流关系[D]. 衡阳: 南华大学, 2021.
[1] WANG Kun, WANG Shi-qing, LI Jian, DAN Min, CHEN Lun-jiang. Thickness Uniformity of Anti-Seizing Coating for Fasteners Prepared by Magnetron Sputtering [J]. VACUUM, 2021, 58(1): 67-71.
[2] LI Jian, TONG Hong-hui, DAN Min, JIN Fan-ya, WANG Kun, CHEN Lun-jiang. Analysis of Feasibility for Diamond Like Carbon Films Using as Negative Hydrogen Ions Surface Conversion Materials [J]. VACUUM, 2020, 57(4): 6-10.
[3] YANG Wei, WEI Xian-long. Review on On-Chip Electron Sources [J]. VACUUM, 2020, 57(1): 1-10.
[4] YANG Wei, WEI Xian-long. Review on On-Chip Electron Sources [J]. VACUUM, 2019, 56(6): 16-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!