欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (2): 83-87.doi: 10.13385/j.cnki.vacuum.2020.02.16

• 3D Printing Technology • Previous Articles     Next Articles

An Automatic Control Method Based on Laser Peening to Improve Residual Stress of Additive Manufacturing Parts

LIU Dian-hai1,2, LI Lun1,2, ZHOU Bo1,2, ZHAO Ji-bin1,2   

  1. 1.State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;
    2.Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
  • Received:2019-09-02 Online:2020-03-25 Published:2020-04-24

Abstract: Laser peening technology is adopted to improve the residual stress caused by metal laser deposition on the surface of additive manufacturing parts. Laser peening effectively improves the microstructure of materials, improves mechanical properties and also reduces or delays the formation and propagation of cracks, the fatigue life, wear resistance and corrosion resistance of metal materials are effectively improved. A laser peening automation system constituted by robot, laser, optical path system etc, uses off-line programming, machining environment simulation, system integration control and other methods to solve technological process on the surface of various parts, and the light path system is put in vacuum environment.

Key words: laser peening, additive manufacturing, automatic control, trajectory planning, vacuum

CLC Number: 

  • TN249
[1] 来佑彬. 金属激光直接沉积增材制造工艺研究[D]. 沈阳: 中国科学院沈阳自动化研究所, 2015.
[2] 张在玉. 金属材料增材制造技术的应用研究进展[J]. 世界有色金属, 2018, 14: 269,271.
[3] 罗开玉, 周阳, 等. 激光冲击强化对316L不锈钢熔覆层微观结构和性能的影响[J]. 中国激光, 2017, 44(4): 1-8.
[4] Trdan U, Skarba M, Grum J.Laser shock peening effect on the dislocation transitions and grain refinement of Al-Mg-Si alloy[J]. Materials characterization, 2014, 97: 57-68.
[5] King A, Steuwer A, Woodward C, et al.Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials science & engineering A, 2006, 435(4): 12-18.
[6] Lai Y B, Liu W J, Zhao Y H, et al.Measurement of Internal Residual Stress of the Laser Rapid Forming Parts by Incremental-step HoleDrilling Method[J]. Applied Mechanics and Materials, 2013, (365-366): 1011-1016.
[7] ROZMUS-G RNIKOWSKA M. Surface modifications of a Ti-6Al-4V alloy by a laser shock processing[J]. Acta Physica Polonica A, 2010, 117: 808-811.
[8] Salimianriz A, Foroozmehr E, Badrossamay M, et al.Effect of laser shock peening on surface properties and residual stress of Al6061-T6[J]. Optics & lasers in engineering, 2016, 77: 112-117.
[9] 曹子文, 杨清, 高宇. 激光冲击强化 TC17 钛合金室温和高温拉伸性能研究[J]. 表面技术, 2018, 47(3): 85-90.
[10] Sealy M P, Guo Y B, Caslaru R C, et al.Fatigue performance of biodegradable magnesium-calcium alloy processed by laser shock peening for orthopedic implants[J]. International journal of fatigue, 2016, 82: 428-436.
[11] 薛军, 等. 激光冲击强化对激光增材 TC4 钛合金组织和抗氧化性的影响[J]. 中国光学, 2018, 11(2): 198-203.
[12] 许海鹰, 邹世坤, 车志刚, 等. 激光冲击次数对 TC4 氩弧焊焊缝微结构及性能的影响[J]. 中国激光, 2011, 38(3): 92-96.
[13] Ratra B, Peebles P J.Cosmological consequences of a rolling homogeneous scalar field[J]. Phys rev D part fields, 1988, 37(12): 3406-3427.
[14] Qiao H C, Zhao J B, Zhang G X, et al.Effects of laser shock peening on microstructure and residual stress evolution in Ti-45Al-2Cr-2Nb-0. 2B alloy[J]. Surface & coatings technology, 2015, 276: 145-151.
[15] 乔红超, 赵亦翔, 赵吉宾, 等. 激光冲击强化对 Ti Al 合金组织和性能的影响[J]. 光学精密工程, 2014, 22(7): 1766-1773.
[16] 乔红超, 赵吉宾, 陆莹. 纳秒脉宽Nd: YAG激光冲击强化激光器的研制及分析[J]. 中国激光, 2013, 40(8): 08020011-08020017.
[17] 李松夏, 乔红超, 赵吉宾, 等. 激光冲击强化技术原理及研究发展[J]. 光电工程, 2017, 44(6): 569-576.
[18] 任志强, 李鸿, 何卫锋, 等: 发动机1Cr11Ni2W2MoV叶片激光冲击强化的应用研究[J]. 失效分析与预防, 2013, 8(3): 156-160.
[19] Holmlid L, Badiei S.Laser initiated detonation in Rydberg matter with a fast propagating shock wave, releasing protons with keV kinetic energy[J]. Applied Physics Letters, 2005, 344(2-4): 265-70.
[20] 朝阳, 刘赤荣, 应才苏. 激光冲击强化技术研究与应用现状[J]. 机械设计与制造, 2010(4): 61-63.
[1] LIU Shu-ming, ZHAO Bin, LENG Ji-xin, ZHANG Dao-kun. Structure Design and Performance Analysis of Pulverized Vacuum Sewage Pump [J]. VACUUM, 2020, 57(2): 17-21.
[2] JIANG Xie-chang. Vacuum Pumps for Chemical Process Industries [J]. VACUUM, 2020, 57(2): 1-7.
[3] QI Song-song, XU Xiao-hui, LIU Jia-lin, ZHANG Rui, LI Can-lun, DONG De-sheng, SHI Cheng-tian. Design and Analysis of Temperature Control Heat Sink for Thermal Vacuum Test Equipment [J]. VACUUM, 2020, 57(2): 62-65.
[4] DONG Yan-hong, ZOU Tong-hua, ZHANG Kun-sheng, WANG Wei, HUI Qing-ling. Effect of Cold Trap Temperature on Vacuum Cooling of Cooked Meat Products [J]. VACUUM, 2020, 57(2): 66-70.
[5] ZHAO Yu-hui, ZHAO Ji-bin, WANG Zhi-guo. Research on Warp Distortion of Inconel 625 Nickel-Based Alloys Fabricated by Laser Melting Additive Manufacturing [J]. VACUUM, 2020, 57(2): 88-93.
[6] YU Sheng-bin, QIAO Bao-zhen, YU Qing-ming, ZHANG Bao-guo, WANG Ying-wu, QIAO Mu. Study on the Endpoint Judgment for Capacitor Vacuum Immersion Process by Using Water Molecular Mass Spectrometer [J]. VACUUM, 2020, 57(1): 11-16.
[7] WU Le-yu. Applicability Research of Different High Barrier Composite Films on VIP with Groove [J]. VACUUM, 2020, 57(1): 62-66.
[8] LI Xiao-feng, HUANG Qiang-hua, CHEN Guang-qi, HE Xiao-dong, ZHU Ming. Simulated Experimental Study on Vacuum Life of Cryogenic Insulated Cylinders [J]. VACUUM, 2020, 57(1): 56-61.
[9] ZHAO Yu-hui, YAO Chao, WANG Zhi-guo. Research on Test, Prediction Method of Molten Pool by Laser Additive Maufacturing [J]. VACUUM, 2020, 57(1): 76-82.
[10] LIU Yan-wen, TIAN Hong, LU Yu-xin, SHI Wen-qi, ZHU Hong, LI Fen, LI Yun, GU Bing, WANG Xiao-xia. Photocathode Used as Microwave Vacuum Electronic Devices [J]. VACUUM, 2019, 56(6): 7-11.
[11] XING Yin-long, WU Jie-feng, LIU Zhi-hong, BO Li, ZHOU Neng-tao. Study on the Technology of Ultrahigh Vacuum Surface Treatment in 316LN Special-Shaped Vacuum Box [J]. VACUUM, 2019, 56(6): 27-29.
[12] DING Sun-an, YANG Hui. Introduction of Nano-X and it's Application Progress [J]. VACUUM, 2019, 56(6): 60-63.
[13] LIU Zhao, XING Hong-shuo, SU Jia-hao, ZHANG Jun-shen, LIANG Shuai, XIE Yuan-hua, HAN Jin. Discussion on Present Situation and Development Trend of Vacuum Elevator [J]. VACUUM, 2019, 56(6): 54-59.
[14] WANG Zhi-rong, MA Qiang, LONG Guo-liang, LI Xue-feng, LIU Cheng. Development and Application of Multi-Chamber Tunnel Continuous Vacuum Sintering Furnace and Heat Treatment Furnace [J]. VACUUM, 2019, 56(5): 6-11.
[15] WANG Peng-cheng, HUANG tao, LIU Jia-ming, SUN Xiao-yang, LIU Shun-ming, DONG Hai-yi. The Vacuum System of LRBT at CSNS [J]. VACUUM, 2019, 56(5): 21-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .