欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (1): 40-47.doi: 10.13385/j.cnki.vacuum.2022.01.08

Previous Articles     Next Articles

Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD

WAN Shu-hong1, LIN Jing1, FENG Shuai2   

  1. 1. Institute of light industry, Harbin University of Commerce, Harbin 150028, China;
    2. Harbin Huade University, Harbin 150028, China
  • Received:2020-10-20 Online:2022-01-25 Published:2022-01-27

Abstract: Diamond coated tools show excellent hardness,wear resistance and thermal conductivity. In military, aerospace and other high-end fields, there is no substitute for diamond coated tools in the processing of graphite, high silicon aluminum alloy, carbon fiber reinforced plastic and other difficult cutting materials. However, there are two problems with diamond coated tools. One is the poor adhesion between the coating and the cutting tool, which leads to the coating falling off prematurely in use. The other one is that it is difficult to ensure the flatness and dimensional accuracy of the machined surface due to the large surface roughness of the coating. In this paper, the research results of diamond coating prepared by HFCVD in recent years are reviewed from the aspects of enhancing the adhesion and reducing the roughness of coating, and the influence of various factors on the performance of diamond coated tools is analyzed.

Key words: hot filament CVD, cemented carbide substrate, diamond coated tool, film substrate bonding strength, surface roughness

CLC Number: 

  • TQ127
[1] 王娅楠, 刘建, 韩笑. 石墨材料在航天领域的应用及展望[J]. 炭素技术, 2017, 36(5): 1-4.
[2] 王群, 王婧超, 李雄魁, 等. 航天用轻质结构材料研究进展及应用需求[J]. 宇航材料工艺, 2017, 47(1): 1-4.
[3] 毛美姣. 钨钴类硬质合金刀具化学机械抛光基础研究[D]. 长沙: 湖南大学, 2019.
[4] 袁帅, 刘献礼, 岳彩旭. 陶瓷刀具的应用及其发展[J]. 金属加工(冷加工). 2015(6): 57-59.
[5] 陈东亮. 聚晶金刚石的制备与性能研究[D]. 牡丹江: 牡丹江师范学院, 2019.
[6] 张金旭, 任志东, 毕道广, 等. 金刚石厚膜的制备方法及应用展望[J]. 河南科技, 2015(4): 30-33.
[7] WANG C C, WANG X C, SUN F F.Tribological behavior and cutting performance of monolayer, bilayer and multilayer diamond coated milling tools in machining of zirconia ceramics[J]. Surface and Coatings Technology, 2018, 353: 49-57.
[8] 汤咏舫, 黄纲汉, 刘勇. 人造金刚石聚晶粘结剂的研究[J]. 稀有金属, 2000(2): 111-114.
[9] 邓福铭, 卢学军, 赵志岩, 等. CVD金刚石厚膜刀具及应用研究[J]. 金刚石与磨料磨具工程, 2010, 30(2): 29-34.
[10] 黄平, 汪建华, 刘繁, 等. 微波法制备单晶金刚石的研究进展[J]. 武汉工程大学学报, 2016, 38(4): 357-363.
[11] 吕反修, 唐伟忠, 李成明, 等. 直流电弧等离子体喷射在金刚石膜制备和产业化中的应用[J]. 金属热处理, 2008(1): 48-53.
[12] 徐银超, 陈康华, 王社权, 等. 金刚石涂层硬质合金刀具涂层的研究和应用进展[J]. 硬质合金, 2015, 32(2): 136-146.
[13] 林峰. 超硬材料的研究进展[J]. 新型工业化, 2016, 6(3): 28-52.
[14] LIU K, DAI B, RALCHENKO V, et al.Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity[J]. Sensors & Actuators A: Physical, 2017, 259: 121-126.
[15] 孙碧武, 刘朝晖, 林彰达. 用表面分析方法直接研究亚稳态条件下金刚石的生长机理[J]. 自然科学进展, 1995(2): 41-44.
[16] 汪新义, 邬荫芳. 稀土元素对硬质合金钴粘结相影响的研究[J]. 硬质合金, 1996, 13(4): 196-200.
[17] POLINI R, DELOGU M, MARCHESELLI G.Adherent diamond coatings on cemented tungsten carbide substrates with new Fe/Ni/Co binder phase[J]. Thin Solid Films, 2006, 494(1): 133-140.
[18] 魏秋平, 余志明, 马莉, 等. 化学脱钴对硬质合金沉积金刚石薄膜的影响[J]. 中国有色金属学报, 2008, 18(6): 1070-1081.
[19] 陈磊, 玄真武, 董长顺. 硬质合金表面粗糙度对金刚石涂层附着力影响的研究[J].超硬材料工程, 2009, 21(2): 8-11.
[20] 熊超. 金刚石涂层刀具的膜基结合力改善途径与性能研究[D]. 广州: 华南理工大学, 2018.
[21] SOMMER M, HAUBNER R, LUX B.Diamond deposition on copper treated hardmetal substrates[J]. Diamond & Related Materials, 2000, 9(3): 351-357.
[22] 邓全, 满卫东, 杨自立, 等. 去Co深度及薄膜厚度对金刚石薄膜-硬质合金附着力的影响[J]. 硬质合金, 2018, 35(2): 86-94.
[23] 刘伟, 满卫东, 吕继磊, 等. 植晶工艺对金刚石涂层硬质合金刀具切削性能的影响[J]. 硬质合金, 2017, 34(3): 167-173.
[24] LINNIK S A, GAYDAYCHUK A V, OKHOTNIKOV V V.Improvement to the adhesion of polycrystalline diamond films on WC-Co cemented carbides through ion etching of loosely bound growth centers[J]. Surface and Coatings Technology, 2018, 334: 227-232.
[25] 俞世吉, 邬钦崇, 张志明, 等. WC-Co硬质合金表面MW-PCVD制备金刚石薄膜去钴预处理的研究[J]. 高技术通讯, 1998(4): 35-38.
[26] PETRIKOWSKI K, FEBKER M, GABLER J, et al.Study of CrNx and NbC interlayers for HFCVD diamond deposition onto WC-Co substrates[J]. Diamond & Related Materials, 2013, 33: 38-44.
[27] HEI H J, MA J, LI X J, et al.Preparation and performance of chemical vapor deposition diamond coatings synthesized onto the cemented carbide micro-end mills with a SiC interlayer[J]. Surface and Coatings Technology, 2015, 261: 272-277.
[28] HEI H J, SHEN Y Y, MA J, et al.Effect of substrate temperature on SiC interlayers for diamond coatings deposition on WC-Co substrates[J]. Vacuum, 2014, 109: 15-20.
[29] RAGHUVEER M S, YOGANAND S N, JAGANNADHAM K, et al.Improved CVD diamond coatings on WC-Co tool substrates[J]. Wear, 2002, 253: 1194-1206.
[30] POLINI R, BARLETTA M, CRISTOFANILLI G.Wear resistance of nano-and micro-crystalline diamond coatings onto WC-Co with Cr/CrN interlayers[J]. Thin Solid Films, 2010, 519(5): 1629-1635.
[31] WEI Q P, YU Z M, MA L, et al.The effects of temperature on nanocrystalline diamond films deposited on WC-13 wt.% Co substrate with W-C gradient layer[J]. Applied Surface ence, 2009, 256(5): 1322-1328.
[32] 邓福铭, 陈立, 刘畅. 不同沉积功率对CVD金刚石涂层性能的影响[J]. 金刚石与磨料磨具工程, 2015, 35(1): 1-5.
[33] 张婷. HFCVD法制备金刚石膜以及工艺参数对薄膜的影响[D].郑州:河南工业大学,2016.
[34] 陈振环, 徐菊芳, 陈志明. 实验参数对热丝CVD人造金刚石膜生长的影响[J]. 科技资讯, 2011(27): 92-93.
[35] 赵云. 硬质合金基体上金刚石涂层沉积条件对其结合性能的影响[D]. 南京: 南京航空航天大学, 2011.
[36] 许青波, 王传新, 王涛, 等. 热丝化学气相沉积纳米金刚石修复损伤PCD刀具的研究[J]. 真空科学与技术学报, 2018, 38(5): 390-395.
[37] 唐壁玉, 刘劲松. 生长温度对CVD金刚石薄膜的影响[J]. 材料开发与应用, 1997(6): 11-15.
[38] SALGUEIREDO E, AMARAL M, NETO M A, et al.HFCVD diamond deposition parameters optimized by a Taguchi Matrix[J]. Vacuum, 2011, 85(6): 701-704.
[39] 邓福铭, 邹波, 刘畅, 等. 沉积气压对CVD金刚石涂层质量的影响[J]. 金刚石与磨料磨具工程, 2013, (5): 1-4.
[40] 户海峰, 徐锋, 左敦稳, 等. 硬质合金基体金刚石涂层沉积工艺研究[J]. 机械制造与自动化, 2013, 42(5): 44-47.
[41] WANG X C, ZHAO T Q, SUN F H, et al.Comparisons of HFCVD diamond nucleation and growth using different carbon sources[J]. Diamond & Related Materials, 2015, 54: 26-33.
[42] 邓福铭, 薄祥, 许晨阳, 等. CVD样品台旋转对沉积金刚石涂层的影响[J]. 人工晶体学报, 2019, 48(10): 1879-1885.
[43] 魏秋平, 王玲, 余志明, 等. 进气方式对热丝CVD制备金刚石薄膜的影响[J]. 中国表面工程, 2009, 22(6): 36-41.
[44] CHATTOPADHYAY A, SARANGI S K, CHATTOPADHYAY A K.Effect of negative dc substrate bias on morphology and adhesion of diamond coating synthesised on carbide turning tools by modified HFCVD method[J]. Applied Surface Science, 2008, 255(5): 1661-1671.
[45] 翟豪, 龙芬, 余志明, 等. 退火和氧化性酸处理对HFCVD法制备金刚石薄膜质量的影响[J]. 粉末冶金材料科学与工程, 2013, 18(4): 539-545.
[46] HASSAN I U, REGO C A, ALI N, et al.An investigation of the structural properties of diamond films deposited by pulsed bias enhanced hot filament CVD[J]. Thin Solid Films, 1999, 355: 134-138.
[47] 邓福铭, 赵晓凯, 吴学林, 等. 碳源浓度对CVD金刚石涂层质量的影响[J]. 硬质合金, 2013, 30(2): 59-65.
[48] 陆峰, 王筱晴, 查丽琼, 等. 不同碳源浓度金刚石涂层刀具切削石材的性能研究[J]. 人工晶体学报, 2018, 47(9): 1873-1880.
[49] 孙方宏, 陈明, 张志明. 碳源浓度对金刚石薄膜涂层刀具性能的影响[J]. 金刚石与磨料磨具工程, 2000(5): 3-6.
[50] 王宜豹, 邱慧敏, 张妹, 等. 多层金刚石薄膜制备工艺和应力分析研究[J]. 山东科学, 2020, 33(1): 61-67.
[51] 代凯, 王传新, 范咏志, 等. 低浓度氩气对金刚石薄膜的影响及机理研究[J]. 真空科学与技术学报, 2017, 37(3): 272-276.
[52] RAKHA S A, XINTAI Z, ZHU D, et al.Effects of N2 addition on nanocrystalline diamond films by HFCVD in Ar/CH4 gas mixture[J]. Current Applied Physics, 2010, 10(1): 171-175.
[53] 翁俊, 刘繁, 孙祁, 等. 氮气体积浓度对高微波功率沉积金刚石膜的影响[J]. 金刚石与磨料磨具工程, 2015, 35(3): 23-28.
[54] 肖雄. 纳米金刚石厚膜在钼基体上的生长研究[D]. 武汉: 武汉工程大学, 2017.
[1] ZHENG Cai-guo, CHEN Qing-chuan, NIE Jun-wei, LI Min-jiu, CHEN Mei-yan. Study on Characteristics of Plasma Polished Quartz Glass [J]. VACUUM, 2020, 57(4): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .