欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (1): 48-53.doi: 10.13385/j.cnki.vacuum.2022.01.09

Previous Articles     Next Articles

Study on a Novel Micro-Focus Electron Source for Carbon Nanotubes

ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun   

  1. Wenzhou Key Lab of Micro-Nano Optoelectronic Devices, Wenzhou University, Wenzhou 325035, China
  • Received:2021-05-05 Online:2022-01-25 Published:2022-01-27

Abstract: A new type of micro-focus electron source based on carbon nanotube field emission is developed. Laser ablation of the nickel substrate would melt the metal and spray the unoxidized metal inside to expose to the surface to form a hemispherical shell with a diameter of about 350μm,on which the carbon nanotube film is grown by the direct chemical vapor deposition technique. The micro-dimension electron source shows good field emission characteristic performances including low turn-on electric field(<1V/μm), high emission current(up to 1A/cm2), and stable high pressure emission stability. After addition of graphene materials and 750℃ annealing, the high-pressure emission stability is further improved. This work may provide an effective approach to prepare high-current micro-scale field emission cathodes.

Key words: field emission electron source, chemical vapor deposition, multi-walled carbon nanotubes, graphene, laser ablation

CLC Number: 

  • TB383
[1] SHAO X, SRINIVASAN A, ANG W K, et al.A high-brightness large-diameter graphene coated point cathode field emission electron source[J]. Nature Communications, 2018, 9(1): 1288.
[2] GIUBILEO F, DI BARTOLOMEO A, IEMMO L, et al.Field emission from carbon nanostructures[J]. Applied Sciences, 2018, 8(4): 526.
[3] DE JONGE N.Carbon nanotube electron sources for electron microscopes[J]. Advances in Imaging and Electron Physics, 2009, 156: 203-233.
[4] TEO K.Carbon nanotube electron source technology[J]. JOM, 2007, 59(3): 29-32.
[5] DONG C, MYNENI G R.Carbon nanotube electron source based ionization vacuum gauge[J]. Applied Physics Letters, 2004, 84(26): 5443-5445.
[6] DE JONGE N, BONARD J M.Carbon nanotube electron sources and applications[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical,Physical and Engineering Sciences, 2004, 362(1823): 2239-2266.
[7] DE JONGE N.Brightness of carbon nanotube electron sources[J]. Journal of Applied Physics, 2004, 95(2): 673-681.
[8] HAINFELD J F.Understanding and using field emission sources[J]. Scanning Electron Microscopy, 1977, 1: 591-604.
[9] FORBES R G, EDGCOMBE C, VALDRE U.Some comments on models for field enhancement[J]. Ultramicroscopy, 2003, 95: 57-65.
[10] CRESPI V H, CHOPRA N G, COHEN M L, et al.Anisotropic electron-beam damage and the collapse of carbon nanotubes[J]. Physical Review B, 1996, 54(8): 5927-5931.
[11] PAULMIER T, BALAT-PICHELIN M, LE QUÉAU D, et al. Physico-chemical behavior of carbon materials under high temperature and ion irradiation[J]. Applied Surface Science, 2001, 180(3/4): 227-245.
[12] DRESSELHAUS G, DRESSELHAUS M S, SAITO R.Physical properties of carbon nanotubes[M]. Singapore: World Scientific, 1998.
[13] PURCELL S, VINCENT P, JOURNET C, et al.Hot nanotubes:Stable heating of individual multiwall carbon nanotubes to 2000K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 105502.
[14] THONG J, OON C H, ENG W K, et al.High-current field emission from a vertically aligned carbon nanotube field emitter array[J]. Applied physics letters, 2001, 79(17): 2811-2813.
[15] SEMET V, BINH V T, VINCENT P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345.
[16] DI Y S, XIAO M, ZHANG X B, et al.Large and stable emission current from synthesized carbon nanotube/fiber network[J]. Journal of Applied Physics, 2014, 115(6): 064305.
[17] SUN B, WANG Y, DING G F.RETRACTED ARTICLE: Flexible field emitter for X-ray generation by implanting CNTs into nickel foil[J]. Nanoscale Research Letters, 2016, 11(1): 326.
[18] DENG J H, LIU R N, ZHANG Y, et al.Highly improved field emission from vertical graphene-carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723: 75-83.
[19] DENG J H, CHENG G A, ZHENG R T, et al.Catalyst-free, self-assembly, and controllable synthesis of graphene flake-carbon nanotube composites for high-performance field emission[J]. Carbon, 2014, 67: 525-533.
[20] DENG J H, ZHENG R T, ZHAO Y, et al.Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission[J]. ACS Nano, 2012, 6(5): 3727-3733.
[21] DENG J H, ZHENG R T, YANG Y M, et al.Excellent field emission characteristics from few-layer graphene-carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition[J]. Carbon, 2012, 50(12): 4732-4737.
[22] PARMEE R J, COLLINS C M, MILNE W I, et al.X-ray generation using carbon nanotubes[J]. Nano Convergence, 2015, 2(1): 1-27.
[23] LIU Z, ZHANG J, YANG G, et al.Development of a carbon nanotube based microfocus X-ray tube with single focusing electrode[J]. Review of Scientific Instruments, 2006, 77(5): 054302.
[24] KIM H N, JEONG H Y, LEE J H, et al.Development of a high resolution X-ray inspection system using a carbon nanotube based miniature X-ray tube[J]. Review of Scientific Instruments, 2020, 91(4): 043703.
[25] CHOI Y C, KANG J T, PARK S, et al.Preparation of a miniature carbon nanotube paste emitter for very high resolution X-ray imaging[J]. Carbon, 2016, 100: 302-308.
[26] ZHANG M, TANG K, ZHANG J, et al.Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 491-501.
[27] ZHANG M, CHEN G, ZHOU Y, et al.Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Materials & Design, 2014, 53: 568-576.
[28] HERNADI K, NAGY J B, BERNAERTS D, et al.Fe-catalyzed carbon nanotube formation[J]. Carbon, 1996, 34(10): 1249-1257.
[29] FONSECA A, HERNADI K, NAGY J B, et al.Optimization of catalytic production and purification of buckytubes[J]. Journal of Molecular Catalysis A Chemical, 1996, 107(1-3): 159-168.
[30] YU H P, LUO H J, CAI J Q, et al.Molecular and atomic adsorptions of hydrogen, oxygen, and nitrogen on defective carbon nanotubes:A first-principles study[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26655-26665.
[31] ZHAO Y Y, CAI J Q, LUO H J, et al.Low pressure hydrogen sensing based on carbon nanotube field emission:Mechanism of atomic adsorption induced work function effects[J]. Carbon, 2017, 124: 669-674.
[32] DONG C K, LUO H J, CAI J Q, et al.Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale, 2016, 8(10): 5599-5604.
[33] THAPA A, JUNGJOHANN K L, WANG X W, et al.Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification[J]. Journal of Materials Science, 2020, 55(5): 2101-2117.
[34] LIM Y D, KONG Q Y, WANG S M, et al.Enhanced field emission properties of carbon nanotube films using densification technique[J]. Applied Surface Science, 2019, 477: 211-219.
[35] DE JONGE N, BONARD J M.Carbon nanotube electron sources and applications[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2004, 362(1823): 2239-2266.
[36] DONG H S, JUNG S Ⅱ, YUN K N, et al.Field emission properties from flexible field emitters using carbon nanotube film[J]. Applied physics letters, 2014, 105(3): 1179.
[37] JEONG H J, JEEONG H D, KIM H Y, et al.All-carbon nanotube-based flexible field-emission devices: From cathode to anode[J]. Advanced Functional Materials, 2011, 21(8): 1526-1532.
[38] CHANG H C, LI C C, JEN S F, et al.All-carbon field emission device by direct synthesis of graphene and carbon nanotube[J]. Diamond and Related Materials, 2013, 31: 42-46.
[39] KAUR G, PULAGARA N V, KUMAR R, et al.Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission[J]. Diamond and Related Materials, 2020, 106: 107847.
[40] NAM T H, GOTO K, SHIMAMURA Y, et al.Effects of high-temperature thermal annealing on properties of aligned multi-walled carbon nanotube sheets and their composites[J]. Composite Interfaces, 2020, 27(6): 569-586.
[1] ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14.
[2] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[3] RAN Biao, LIU Fei, YU Xiang. In-situ Growth of Graphene on Cemented Carbide through Amorphous SiC [J]. VACUUM, 2019, 56(4): 24-30.
[4] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .