VACUUM ›› 2022, Vol. 59 ›› Issue (1): 48-53.doi: 10.13385/j.cnki.vacuum.2022.01.09
Previous Articles Next Articles
ZHU Wei, LU Qun-xu, QIAN Wei-jin, HUANG Wei-jun, DONG Chang-kun
CLC Number:
[1] SHAO X, SRINIVASAN A, ANG W K, et al.A high-brightness large-diameter graphene coated point cathode field emission electron source[J]. Nature Communications, 2018, 9(1): 1288. [2] GIUBILEO F, DI BARTOLOMEO A, IEMMO L, et al.Field emission from carbon nanostructures[J]. Applied Sciences, 2018, 8(4): 526. [3] DE JONGE N.Carbon nanotube electron sources for electron microscopes[J]. Advances in Imaging and Electron Physics, 2009, 156: 203-233. [4] TEO K.Carbon nanotube electron source technology[J]. JOM, 2007, 59(3): 29-32. [5] DONG C, MYNENI G R.Carbon nanotube electron source based ionization vacuum gauge[J]. Applied Physics Letters, 2004, 84(26): 5443-5445. [6] DE JONGE N, BONARD J M.Carbon nanotube electron sources and applications[J]. Philosophical Transactions of the Royal Society of London Series A: Mathematical,Physical and Engineering Sciences, 2004, 362(1823): 2239-2266. [7] DE JONGE N.Brightness of carbon nanotube electron sources[J]. Journal of Applied Physics, 2004, 95(2): 673-681. [8] HAINFELD J F.Understanding and using field emission sources[J]. Scanning Electron Microscopy, 1977, 1: 591-604. [9] FORBES R G, EDGCOMBE C, VALDRE U.Some comments on models for field enhancement[J]. Ultramicroscopy, 2003, 95: 57-65. [10] CRESPI V H, CHOPRA N G, COHEN M L, et al.Anisotropic electron-beam damage and the collapse of carbon nanotubes[J]. Physical Review B, 1996, 54(8): 5927-5931. [11] PAULMIER T, BALAT-PICHELIN M, LE QUÉAU D, et al. Physico-chemical behavior of carbon materials under high temperature and ion irradiation[J]. Applied Surface Science, 2001, 180(3/4): 227-245. [12] DRESSELHAUS G, DRESSELHAUS M S, SAITO R.Physical properties of carbon nanotubes[M]. Singapore: World Scientific, 1998. [13] PURCELL S, VINCENT P, JOURNET C, et al.Hot nanotubes:Stable heating of individual multiwall carbon nanotubes to 2000K induced by the field-emission current[J]. Physical Review Letters, 2002, 88(10): 105502. [14] THONG J, OON C H, ENG W K, et al.High-current field emission from a vertically aligned carbon nanotube field emitter array[J]. Applied physics letters, 2001, 79(17): 2811-2813. [15] SEMET V, BINH V T, VINCENT P, et al.Field electron emission from individual carbon nanotubes of a vertically aligned array[J]. Applied Physics Letters, 2002, 81(2): 343-345. [16] DI Y S, XIAO M, ZHANG X B, et al.Large and stable emission current from synthesized carbon nanotube/fiber network[J]. Journal of Applied Physics, 2014, 115(6): 064305. [17] SUN B, WANG Y, DING G F.RETRACTED ARTICLE: Flexible field emitter for X-ray generation by implanting CNTs into nickel foil[J]. Nanoscale Research Letters, 2016, 11(1): 326. [18] DENG J H, LIU R N, ZHANG Y, et al.Highly improved field emission from vertical graphene-carbon nanotube composites[J]. Journal of Alloys and Compounds, 2017, 723: 75-83. [19] DENG J H, CHENG G A, ZHENG R T, et al.Catalyst-free, self-assembly, and controllable synthesis of graphene flake-carbon nanotube composites for high-performance field emission[J]. Carbon, 2014, 67: 525-533. [20] DENG J H, ZHENG R T, ZHAO Y, et al.Vapor-solid growth of few-layer graphene using radio frequency sputtering deposition and its application on field emission[J]. ACS Nano, 2012, 6(5): 3727-3733. [21] DENG J H, ZHENG R T, YANG Y M, et al.Excellent field emission characteristics from few-layer graphene-carbon nanotube hybrids synthesized using radio frequency hydrogen plasma sputtering deposition[J]. Carbon, 2012, 50(12): 4732-4737. [22] PARMEE R J, COLLINS C M, MILNE W I, et al.X-ray generation using carbon nanotubes[J]. Nano Convergence, 2015, 2(1): 1-27. [23] LIU Z, ZHANG J, YANG G, et al.Development of a carbon nanotube based microfocus X-ray tube with single focusing electrode[J]. Review of Scientific Instruments, 2006, 77(5): 054302. [24] KIM H N, JEONG H Y, LEE J H, et al.Development of a high resolution X-ray inspection system using a carbon nanotube based miniature X-ray tube[J]. Review of Scientific Instruments, 2020, 91(4): 043703. [25] CHOI Y C, KANG J T, PARK S, et al.Preparation of a miniature carbon nanotube paste emitter for very high resolution X-ray imaging[J]. Carbon, 2016, 100: 302-308. [26] ZHANG M, TANG K, ZHANG J, et al.Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 491-501. [27] ZHANG M, CHEN G, ZHOU Y, et al.Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser[J]. Materials & Design, 2014, 53: 568-576. [28] HERNADI K, NAGY J B, BERNAERTS D, et al.Fe-catalyzed carbon nanotube formation[J]. Carbon, 1996, 34(10): 1249-1257. [29] FONSECA A, HERNADI K, NAGY J B, et al.Optimization of catalytic production and purification of buckytubes[J]. Journal of Molecular Catalysis A Chemical, 1996, 107(1-3): 159-168. [30] YU H P, LUO H J, CAI J Q, et al.Molecular and atomic adsorptions of hydrogen, oxygen, and nitrogen on defective carbon nanotubes:A first-principles study[J]. International Journal of Hydrogen Energy, 2020, 45(51): 26655-26665. [31] ZHAO Y Y, CAI J Q, LUO H J, et al.Low pressure hydrogen sensing based on carbon nanotube field emission:Mechanism of atomic adsorption induced work function effects[J]. Carbon, 2017, 124: 669-674. [32] DONG C K, LUO H J, CAI J Q, et al.Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale, 2016, 8(10): 5599-5604. [33] THAPA A, JUNGJOHANN K L, WANG X W, et al.Improving field emission properties of vertically aligned carbon nanotube arrays through a structure modification[J]. Journal of Materials Science, 2020, 55(5): 2101-2117. [34] LIM Y D, KONG Q Y, WANG S M, et al.Enhanced field emission properties of carbon nanotube films using densification technique[J]. Applied Surface Science, 2019, 477: 211-219. [35] DE JONGE N, BONARD J M.Carbon nanotube electron sources and applications[J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2004, 362(1823): 2239-2266. [36] DONG H S, JUNG S Ⅱ, YUN K N, et al.Field emission properties from flexible field emitters using carbon nanotube film[J]. Applied physics letters, 2014, 105(3): 1179. [37] JEONG H J, JEEONG H D, KIM H Y, et al.All-carbon nanotube-based flexible field-emission devices: From cathode to anode[J]. Advanced Functional Materials, 2011, 21(8): 1526-1532. [38] CHANG H C, LI C C, JEN S F, et al.All-carbon field emission device by direct synthesis of graphene and carbon nanotube[J]. Diamond and Related Materials, 2013, 31: 42-46. [39] KAUR G, PULAGARA N V, KUMAR R, et al.Metal foam-carbon nanotube-reduced graphene oxide hierarchical structures for efficient field emission[J]. Diamond and Related Materials, 2020, 106: 107847. [40] NAM T H, GOTO K, SHIMAMURA Y, et al.Effects of high-temperature thermal annealing on properties of aligned multi-walled carbon nanotube sheets and their composites[J]. Composite Interfaces, 2020, 27(6): 569-586. |
[1] | ZHANG Xiao, LIU Zhao-xian, MENG Dong-hui, REN Guo-hua, WANG Li-na, YAN Rong-xin. Simulation Study on Porous Graphene Helium Permeation [J]. VACUUM, 2021, 58(1): 10-14. |
[2] | GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33. |
[3] | RAN Biao, LIU Fei, YU Xiang. In-situ Growth of Graphene on Cemented Carbide through Amorphous SiC [J]. VACUUM, 2019, 56(4): 24-30. |
[4] | ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique [J]. VACUUM, 2018, 55(5): 10-14. |
|