欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (4): 1-7.doi: 10.13385/j.cnki.vacuum.2022.04.01

• Measurement and Control •     Next Articles

Influence of Turbine Stage Parameters of Composite Molecular Pump on the Performance of Helium Mass Spectrometer Leak Detector

LI Bo1, HOU De-feng2, WANG Xiao-dong1, BA De-chun1   

  1. 1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China;;
    2. Automotive Engineering Corporation, Tianjin 300110, China
  • Received:2021-09-30 Online:2022-07-25 Published:2022-08-09

Abstract: As an important component of the helium mass spectrometer leak detector, the geometric parameters of the composite molecular pump not only affect the pumping performance, but also affect the detection performance of the leak detector. Based on the basic theory of molecular pump pumping, this paper establishes the calculation model of composite molecular pump turbine stage. By changing the blade inclination, blade number, blade height and blade thickness, the pumping performance of composite molecular pump turbine stage to air and helium was calculated respectively, and the influence of composite molecular pump turbine stage parameters on the detection performance of helium mass spectrometer leak detector was studied. The results show that reducing the blade inclination, increasing the number of blades, the blade height and blade thickness are conducive to the improvement of the detection sensitivity of the helium mass spectrometer. Considering the pumping performance of molecular pump and the detection sensitivity of helium mass spectrometer, the optimal blade inclination is 25°, the number of turbine blades is between 25 and 30, the blade height is 3 mm, and the blade thickness is 0.6 mm to 0.8 mm.

Key words: compound molecular pump, turbine stage, blade parameter, helium mass spectrometer leak detector, detection sensitivity

CLC Number: 

  • TB752
[1] 孙京生, 王梓越. 氦质谱检漏技术在火电机组真空系统中的应用[J]. 资源节约与环保, 2019(12): 105-106.
[2] 张汉君, 华道柱, 谢远术, 等. 差分真空单颗粒进样在线气溶胶飞行时间质谱系统的研制[J]. 电子测量与仪器学报, 2018, 32(10): 9-14.
[3] 赵伟, 王金龙, 汪兆军, 等. 乏燃料水池转运舱氦质谱检漏技术的应用[J]. 无损检测, 2020, 42(4): 10-14.
[4] 孟丽红, 舒立杰, 魏智才, 等. 一种用于核工业的氦质谱检漏装置控制系统[J]. 真空科学与技术学报, 2018, 38(11): 930-937.
[5] HENNING J.Thirty years of turbo-molecular pumps: a review and recent developments[J]. Journal of Vacuum Science & Technology A, 1988, 6: 1196-1201.
[6] 巴德纯, 王晓冬, 刘坤, 等. 现代涡轮分子泵的进展[J]. 真空, 2010, 47(4): 1-6.
[7] 杨乃恒. 现代涡轮分子泵的技术现状与展望[J]. 真空, 1996(2): 1-7.
[8] 杨乃恒. 真空获得设备: 第2版[M]. 北京: 冶金工业出版社, 2001: 113-140.
[9] 李博, 侯德峰, 王晓冬, 等. 精检口位置对氦质谱检漏仪性能的影响研究[J]. 仪器仪表学报, 2020, 41(11): 58-65.
[10] 李博, 侯德峰, 王晓冬, 等. 多口分子泵中检口位置对氦质谱检漏仪性能的影响研究[J]. 真空, 2021. 58(6): 1-7.
[11] WANG SHENG, NINOKATA H, Merzari E, et al.Numerical study of a single blade row in turbo molecular pump[J]. Vacuum, 2009, 83(8): 1106-1117.
[12] 王晓冬, 巴德纯, 张世伟, 等. 真空技术[M]. 北京: 冶金工业出版社, 2014.
[13] 张波, 王洁, 尉伟, 等. 蒙塔卡洛法计算分子流状态下真空管道的传输几率[J]. 真空科学与技术学报, 2014, 34(6): 571-574.
[14] 蒋婷婷. 高速小型复合分子泵参数化设计研究[D]. 沈阳: 东北大学, 2014.
[15] 王晓冬, 张磊, 巴德纯, 等. 涡轮分子泵抽气性能计算的误差分析[J]. 真空科学与技术学报, 2016, 36(4): 432-435.
[16] 段献学. 分子增压泵结构性能及其应用的研究[D]. 合肥: 合肥工业大学, 2007.
[17] MALYSHEV O B.Characterisation of a turbo-molecular pumps by a minimum of parameters[J]. Vacuum, 2007, 81(6): 752-758.
[18] AMOLI A.A continuum model for pumping performance of turbo molecular pumps in all flow regimes[J]. Vacuum, 2004, 4: 361-366.
[19] 王晓冬, 巴德纯, 蒋婷婷, 等. 涡轮分子泵抽气性能计算及其误差评价[C]//中国真空学会2014学术年会论文摘要集, 广州, 2014: 15-16.
[1] LI Bo, HOU De-feng, WANG Xiao-dong, BA De-chun. Influence of the Position of Molecular Pump Medium Detection Port on the Performance of Helium Mass Spectrometer Leak Detector [J]. VACUUM, 2021, 58(6): 1-7.
[2] YU Jin-jun, DO Xin, LIU Min-qiang. Design of a Compound Molecular Pump With Ultra-high Vacuum and High Pumping Speed [J]. VACUUM, 2021, 58(4): 36-41.
[3] JIN Peng-li, GONG Chun-zhi, KONG Ying, ZHANG Xin, MA Yu-shan, LIU Hai-bo, HE Tao, YUE Ling, TIAN Xiu-bo. Study on the Effectiveness of Simple and Quick Alcohol Leak Detection in Vacuum Coating Equipment [J]. VACUUM, 2019, 56(5): 69-73.
[4] XING Yin-long, LI Bo, WU Jie-feng, LIU Zhi-hong, ZHOU Neng-tao. Optimization Analysis of Pressure Detection by Helium Mass Spectrometry of ITER Insulation Coils [J]. VACUUM, 2019, 56(4): 15-18.
[5] WANG Kai, CUI Yu-hao, LIU Sheng. Reliability analysis of ZQJ-291H helium mass spectrometer leak detector based on FMECA [J]. VACUUM, 2019, 56(3): 48-51.
[6] WANG Chun-ming, ZHANG Ming-da, SU Yu-ping. Discussion on leak detection method of vacuum application equipment [J]. VACUUM, 2019, 56(1): 52-55.
[7] NING Yuan-tao, HUANG Tao, CHEN Qi, ZHANG Yan-shun , QI Xiao-jun. Optimization design of high-speed shafting for molecular pump based on finite-element method [J]. VACUUM, 2019, 56(1): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .