欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2022, Vol. 59 ›› Issue (5): 74-79.doi: 10.13385/j.cnki.vacuum.2022.05.13

• Vacuum Technology Application • Previous Articles     Next Articles

Simulation Study on Gas Discharge Characteristics of He/Ne Laser Gyro

MA Ru-kun, WANG Guo-dong, QIAN Du, HUANG Jun, XU Qiu-fu   

  1. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2021-12-17 Online:2022-09-25 Published:2022-09-28

Abstract: The glow discharge characteristics of He/Ne gas mixture in the resonator of laser gyroscope are studied. By establishing the corresponding two-dimensional fluid model, the basic physical equations are numerically solved by COMSOL finite element method, and the discharge characteristics such as discharge voltage, current and spatial distribution of charged particle density are obtained. The effects of applied voltage, mixed gas pressure and mixed gas ratio on the discharge characteristics of mixed gas in the resonator are analyzed and discussed. The results show that with the increase of applied voltage, the maintenance voltage, electron density, He+ and Ne+ number density increase, and the increase range of electron density is higher than that of He+ and Ne+. with the increase of air pressure, the maintenance voltage increases gradually, the electron density and He+ number density first increase and then decrease, and the extreme value of electron density is 5.85×1013cm-3, the number density of Ne+ decreases slightly. With the increase of Ne mass fraction in the gas, the maintenance voltage, electron density and He+ number density increase gradually, and the increase range of electron density and He+ number density is roughly the same, and the Ne+ number density remains basically unchanged.

Key words: laser gyro, gas discharge, electron density, ion density, He/Ne

CLC Number: 

  • O461
[1] 史文策, 许江宁, 林恩凡. 陀螺仪的发展与展望[J]. 导航定位学报, 2021, 9(3): 8-12.
[2] 岳明桥, 王天泉. 激光陀螺仪的分析及发展方向[J]. 飞航导弹, 2005(12): 46-48.
[3] 曾庆化, 刘建业, 赖际舟, 等. 环形激光陀螺的最新发展[J]. 传感器技术, 2004(11): 1-4.
[4] 陈运洪, 马家君. 激光陀螺锁区影响因素分析[J]. 光电子·激光, 2021, 32(2): 201-208.
[5] SANDERS G A, STRANDJORD L K, WILLIAMS W, et al.Improvements to signal processing and component minaturization of compact resonator fiber optic gyroscopes[C]//2018 DGON Inertial Sensors and Systems(ISS), Braunschweig: IEEE, 2018.
[6] KHANDELWAL A, HOSSEIN Y S, SYED A, et al.Effects of gain medium parameters on the sensitivity of semiconductor ring laser gyroscope[J]. Optics Communications, 2017, 398: 18-23.
[7] 周敬召, 石顺祥, 刘继芳. He-Ne激光管的失效机理研究[J]. 电子科技, 2009, 22(5): 47-49,58.
[8] 杨海燕. 激光陀螺仪失效机理分析与寿命预测方法研究[D]. 长沙: 国防科学技术大学, 2005.
[9] 徐小清, 谭中奇, 樊振方, 等. 氦氖气体参数对环形激光陀螺光强输出的影响[J]. 中国激光, 2019, 46(12): 34-38.
[10] 顾小卫, 刘彬, 许雪. 基于COMSOL Mutiphysics的空芯光纤中氩气放电模拟仿真[J]. 软件导刊, 2020, 19(6): 155-159.
[11] 钱杨, 冯音琦, 宋晓鹏, 等. 辉光放电反应腔内带电粒子瞬态物理特性仿真研究[J]. 北京石油化工学院学报, 2019, 27(3): 71-78.
[12] 夏广庆, 薛伟华, 陈茂林, 等. 氩气微腔放电中特性参数的数值模拟研究[J]. 物理学报, 2011, 60(1): 397-402.
[13] 赵彦霞. 细长圆管内低气压直流放电中等离子体特性的数值研究[D]. 大连: 大连理工大学, 2010.
[14] 张雅, 渠宇霄, 赵凯悦, 等. He/Ar混合气体空心阴极放电特性的模拟研究[J]. 真空科学与技术学报, 2019, 39(3): 237-244.
[15] 蔡春林. 基于COMSOL的直流气体放电管粒子特性仿真研究[J]. 真空, 2018, 55(3): 17-21.
[16] KOTHNUR P S, RAJA L L.Two-dimensional simulation of a direct-current microhollow cathode discharge[J]. Journal of Applied Physics, 2005, 97(4): 43305.
[17] GORTCHAKOV S, LANGE H, UHRLANDT D.Model of a He-Xe low-pressure dc positive column plasma[J]. Journal of Applied Physics, 2003, 93(12): 9508-9515.
[18] 邹晓兵, 杨新婷, 付洋洋, 等. 低气压He/N2混合气体的辉光放电数值模拟[J]. 高电压技术, 2016, 42(12): 3741-3746.
[19] LXCat等离子体仿真计算数据资源库[EB/OL]. http://fr.lxcat.net.
[1] ZHANG Tian-yi, Yang Zhi-hao, LIU Yun-hui, MA Yu-tian, WANG Bo. Effect of Structure and Material of Narrow-Electrode with Quartz Plate Interlayer on DC Plasma Discharge [J]. VACUUM, 2020, 57(5): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .