欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (5): 61-65.doi: 10.13385/j.cnki.vacuum.2020.05.13

• Measurement and Control • Previous Articles     Next Articles

Effect of Structure and Material of Narrow-Electrode with Quartz Plate Interlayer on DC Plasma Discharge

ZHANG Tian-yi1, Yang Zhi-hao1, LIU Yun-hui2, MA Yu-tian3, WANG Bo1,2   

  1. 1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124,China;
    2. Department of Mechanical Engineering, Zaozhuang Vocational College of Science and Technology, Tengzhou 277599,China;
    3. Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100080,China
  • Received:2019-08-20 Published:2020-11-06

Abstract: In this paper, the low-pressure DC discharge process of a narrow-electrode discharge device with quartz plate interlayer was studied. The influence of electrode structure and material on plasma parameters was discussed. The electrode width is 4 mm and the spacing is more than 40 mm. The experiments were carried out by using the double probe needle method. The influence of electrode structure on the electron density distribution and electron temperature of the home-made DC plasma discharge device was analyzed by changing the pressure and discharge power. The results show that the plasma density can be effectively increased by increasing the surface area of the electrode and adopting special electrode structure. It was also found that with the decrease of air pressure, the positive cylinder area decreases gradually, the plasma density changes gently along the direction of electric field, and the DC plasma density of the anode increases gradually. At this time, the uniformity of plasma spatial distribution increases, and the maximum value is obtained at 16Pa.

Key words: plasma, DC discharge, discharge electrode, uniformity, electron density

CLC Number: 

  • U461
[1] Ye R, Zheng W.Unipolar discharge phenomena in atmospheric pressure helium plasma generated in a quartz tube[J]. Journal of Physics D Applied Physics, 2008, 41(12): 125202.
[2] Willingale L, Mangles S P D, Nilson P M, et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma[J]. Phys. Rev. Lett, 2006, 96(24): 245002.
[3] 莫锦军, 刘少斌, 袁乃昌. 等离子体隐身机理研究[J]. 现代雷达, 2002, 24(3): 9-12.
[4] 徐智勇,高小坤. 等离子体灭菌技术的综述[J]. 中西医结合护理(中英文), 2016, 2(2): 136-138.
[5] 金心宇, 张昱, 姜玄珍, 等. 电极材料对脉冲等离子体降解有机废气的影响分析[J]. 中国环境科学, 1998(3): 22-26.
[6] 李伟康, 秦晓刚, 柳青. 介质材料在电子辐射环境中的放电特性[J]. 真空与低温, 2019, 25(1): 14-18.
[7] 李道儒, 李炳辰, 张生俊, 等. 低压高密度等离子体电极性能研究[J]. 科学技术与工程, 2018, 18(2): 1-6.
[8] 聂勇, 施耀, 李伟,等. 不同电极结构等离子体反应器的放大试验研究[J]. 浙江大学学报(工学版), 2005(2): 110-115.
[9] 刘文正, 陈修阳, 崔伟胜, 等. 锥-螺旋电极在真空等离子体生成中的作用[J]. 高电压技术, 2017, 43(6): 1863-1867.
[10] 潘阁生, 王成, 万树德,等. 静电离子探针在气体放电磁化等离子体参数测量中的应用[J]. 真空科学与技术学报, 2001, 21(2): 116-119.
[11] Lin H, Li G X, Bengtson R D.A comparison of Langmuir probe techniques for measuring temperature fluctuations[J]. Review of Scientific Instruments, 1992, 63(10): 4611-4613.
[12] 周怀北, 王文清, 孙传礼. 气体放电等离子体中朗缪尔探针应用中的问题[J]. 空间科学学报, 1989(3): 180-186.
[13] 罗海云, 冉俊霞, 王新新. 大气压空气介质阻挡汤森放电[J]. 高电压技术, 2012, 38(7): 1661-1666.
[14] 谢爱根, 陈云云, 王祖松, 等. 0~89°的金属二次电子发射系数的通式[J]. 真空科学与技术学报, 2015, 35(2): 150-155.
[15] 谢爱根, 张健, 王刘斌, 等. 金属二次电子发射系数表达式[J]. 强激光与粒子束, 2012, 24(2): 481-485.
[16] Wallenhorst L M, Loewenthal L, Avramidis G.Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma[J]. Applied Surface Science, 2017, 410: 485-493.
[17] 葛萌, 张莉莉, 蔡惠华, 等. 利用静电双探针对辉光放电等离子体诊断分析[J]. 宇航计测技术, 2017, 37(2): 69-72.
[1] WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6.
[2] ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59.
[3] WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6.
[4] YANG Bo, LAI You-bin, WANG Dong-yang, LI Xiang, WU Hai-long, SUN Ming-han,YUAN Ren-yue, SUN Shi-jie. Study on Surface Hardness of Plasma Cladding Layer for High Chromium Iron-Based Alloy [J]. VACUUM, 2020, 57(1): 88-93.
[5] WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84.
[6] ВВ.А.ШАПОВАЛОВ, XU Xiao-hai, WANG Yuan, SUN Zu-lai, SONG Qing-zhu, LI Jian-jun. Application of Plasma Technology in Smelting and Foundry Production [J]. VACUUM, 2019, 56(5): 1-5.
[7] FAN Qi-peng, HU Yu-lian, LIU Bo-wen, TIAN Xu, JIANG De-rong, LIU Zhong-wei. Deposition of Cobalt Carbide Films by Plasma Enhanced Atomic Layer Deposition [J]. VACUUM, 2019, 56(5): 56-60.
[8] ZHAO Jie, TANG De-li, LI Ping-chuan, GENG Shao-fei. Effect of Anode Segmented Form on Ion Beam Distribution of Anode Layer Hall Thruster [J]. VACUUM, 2019, 56(4): 1-5.
[9] ZHANG Zi-xin, LIU Zhong-wei, YANG Li-zhen, CHEN Qiang. Study on Performance of Silicon-Based Nitride Phosphors Coated by Plasma-Assisted Atomic Layer Deposition [J]. VACUUM, 2019, 56(4): 19-23.
[10] LI Yang, TONG Pu-chao, LI Jun-ren, ZHU Jun-li, ZHANG Zhuo-zhuo, CAO Yi-ke. Improvement and Optimization of Welding Gun for Vacuum Plasma Welding Chamber [J]. VACUUM, 2019, 56(4): 71-73.
[11] CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58.
[12] RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .