VACUUM ›› 2020, Vol. 57 ›› Issue (5): 61-65.doi: 10.13385/j.cnki.vacuum.2020.05.13
• Measurement and Control • Previous Articles Next Articles
ZHANG Tian-yi1, Yang Zhi-hao1, LIU Yun-hui2, MA Yu-tian3, WANG Bo1,2
CLC Number:
[1] Ye R, Zheng W.Unipolar discharge phenomena in atmospheric pressure helium plasma generated in a quartz tube[J]. Journal of Physics D Applied Physics, 2008, 41(12): 125202. [2] Willingale L, Mangles S P D, Nilson P M, et al. Collimated multi-MeV ion beams from high-intensity laser interactions with underdense plasma[J]. Phys. Rev. Lett, 2006, 96(24): 245002. [3] 莫锦军, 刘少斌, 袁乃昌. 等离子体隐身机理研究[J]. 现代雷达, 2002, 24(3): 9-12. [4] 徐智勇,高小坤. 等离子体灭菌技术的综述[J]. 中西医结合护理(中英文), 2016, 2(2): 136-138. [5] 金心宇, 张昱, 姜玄珍, 等. 电极材料对脉冲等离子体降解有机废气的影响分析[J]. 中国环境科学, 1998(3): 22-26. [6] 李伟康, 秦晓刚, 柳青. 介质材料在电子辐射环境中的放电特性[J]. 真空与低温, 2019, 25(1): 14-18. [7] 李道儒, 李炳辰, 张生俊, 等. 低压高密度等离子体电极性能研究[J]. 科学技术与工程, 2018, 18(2): 1-6. [8] 聂勇, 施耀, 李伟,等. 不同电极结构等离子体反应器的放大试验研究[J]. 浙江大学学报(工学版), 2005(2): 110-115. [9] 刘文正, 陈修阳, 崔伟胜, 等. 锥-螺旋电极在真空等离子体生成中的作用[J]. 高电压技术, 2017, 43(6): 1863-1867. [10] 潘阁生, 王成, 万树德,等. 静电离子探针在气体放电磁化等离子体参数测量中的应用[J]. 真空科学与技术学报, 2001, 21(2): 116-119. [11] Lin H, Li G X, Bengtson R D.A comparison of Langmuir probe techniques for measuring temperature fluctuations[J]. Review of Scientific Instruments, 1992, 63(10): 4611-4613. [12] 周怀北, 王文清, 孙传礼. 气体放电等离子体中朗缪尔探针应用中的问题[J]. 空间科学学报, 1989(3): 180-186. [13] 罗海云, 冉俊霞, 王新新. 大气压空气介质阻挡汤森放电[J]. 高电压技术, 2012, 38(7): 1661-1666. [14] 谢爱根, 陈云云, 王祖松, 等. 0~89°的金属二次电子发射系数的通式[J]. 真空科学与技术学报, 2015, 35(2): 150-155. [15] 谢爱根, 张健, 王刘斌, 等. 金属二次电子发射系数表达式[J]. 强激光与粒子束, 2012, 24(2): 481-485. [16] Wallenhorst L M, Loewenthal L, Avramidis G.Topographic, optical and chemical properties of zinc particle coatings deposited by means of atmospheric pressure plasma[J]. Applied Surface Science, 2017, 410: 485-493. [17] 葛萌, 张莉莉, 蔡惠华, 等. 利用静电双探针对辉光放电等离子体诊断分析[J]. 宇航计测技术, 2017, 37(2): 69-72. |
[1] | WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6. |
[2] | ZHAO Jie, XV Li, LI Jian, WANG Kun, WANG Shi-qing. Numerical Simulation and Analysis of Discharge Plasma in Hall Thruster [J]. VACUUM, 2020, 57(4): 54-59. |
[3] | WANG Xiao-ming, E Dong-mei, WU Jun-sheng, ZHANG Xu-yue, ZHOU Yan-wen. Simulation of MagnetronSputtering Enhancement Based on Plasma [J]. VACUUM, 2020, 57(3): 5-6. |
[4] | YANG Bo, LAI You-bin, WANG Dong-yang, LI Xiang, WU Hai-long, SUN Ming-han,YUAN Ren-yue, SUN Shi-jie. Study on Surface Hardness of Plasma Cladding Layer for High Chromium Iron-Based Alloy [J]. VACUUM, 2020, 57(1): 88-93. |
[5] | WANG Dong-yang, LAI You-bin, YANG Bo, LI Xiang, WU Hai-long, SUN Ming-han, YUAN Ren-yue, SUN Shi-jie. Influence of Process Parameter on the Residual Stress of Multi-Track Overlapping Plasma Cladding [J]. VACUUM, 2019, 56(6): 80-84. |
[6] | ВВ.А.ШАПОВАЛОВ, XU Xiao-hai, WANG Yuan, SUN Zu-lai, SONG Qing-zhu, LI Jian-jun. Application of Plasma Technology in Smelting and Foundry Production [J]. VACUUM, 2019, 56(5): 1-5. |
[7] | FAN Qi-peng, HU Yu-lian, LIU Bo-wen, TIAN Xu, JIANG De-rong, LIU Zhong-wei. Deposition of Cobalt Carbide Films by Plasma Enhanced Atomic Layer Deposition [J]. VACUUM, 2019, 56(5): 56-60. |
[8] | ZHAO Jie, TANG De-li, LI Ping-chuan, GENG Shao-fei. Effect of Anode Segmented Form on Ion Beam Distribution of Anode Layer Hall Thruster [J]. VACUUM, 2019, 56(4): 1-5. |
[9] | ZHANG Zi-xin, LIU Zhong-wei, YANG Li-zhen, CHEN Qiang. Study on Performance of Silicon-Based Nitride Phosphors Coated by Plasma-Assisted Atomic Layer Deposition [J]. VACUUM, 2019, 56(4): 19-23. |
[10] | LI Yang, TONG Pu-chao, LI Jun-ren, ZHU Jun-li, ZHANG Zhuo-zhuo, CAO Yi-ke. Improvement and Optimization of Welding Gun for Vacuum Plasma Welding Chamber [J]. VACUUM, 2019, 56(4): 71-73. |
[11] | CHEN Wen-bo, CHEN Lun-jiang, Liu Chuan-dong, CHENG Chang-ming, TONG Hong-hui, ZHU Hai-long. Numerical simulation of a DC arc thermal plasma torch [J]. VACUUM, 2019, 56(1): 56-58. |
[12] | RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57. |
|