欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 47-52.doi: 10.13385/j.cnki.vacuum.2024.02.08

• Measurement and Control • Previous Articles     Next Articles

Optimization and Simulation of High-precision Electron Beam Deflection System

JIA Zi-zhao1,2, GUO Zhi-wei1,2, GAO Xue-lin1   

  1. 1. Institute of Physical and Chemical Engineering of Nuclear Industry, Tianjin 300180, China;
    2. National Key Laboratory of Particle Transport and Separation Technology, Tianjin 300180, China
  • Received:2023-09-19 Online:2024-03-25 Published:2024-03-28

Abstract: High-precision transmission control of electron beams is important to ensure reliable applications of electron guns in metal melting, evaporation coating, and electron beam welding. The transmission control technology of electron beams in the evaporation environment of metal materials was studied, and a 30 kV electron beam deflection model was established based on CST particle simulation analysis software. The influence of the structure and position parameters of the deflection device on the distribution of electron beam was analyzed, and the control parameters and structure of the electron beam deflection that meet the requirements were obtained through simulation design optimization. The test results show that the electron beam transmission trajectory under the optimized structure is controllable, and the established 30 kV electron beam deflection system meets the requirements.

Key words: electron beam transmission, CST simulation, optimization of the deflection device

CLC Number:  TF134

[1] 卢儒学, 刘海浪, 王小宇, 等. 电子束熔覆技术的研究现状与发展[J]. 热加工工艺, 2022, 51(8): 15-19.
[2] 许世娇, 权纯逸, 杨堃, 等. 金属增材制造技术在航空领域的应用现状及前景展望[J]. 粉末冶金工业,2022, 32(3): 9-17.
[3] 李宏新, 李阳, 余业锋, 等. 电子束选区熔化成形工艺与组织模拟[J]. 电加工与模具, 2021(增刊1): 5-15.
[4] PARKER R K, ABRAMS R H, DANLY B G, et al.Vacuum electronics[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 835-845.
[5] 陈荣发. 电子束蒸发与磁控溅射镀铝的性能分析研究[J]. 真空, 2003(2): 11-15.
[6] 张秉刚, 吴林, 冯吉才. 国内外电子束焊接技术研究现状[J]. 焊接, 2004(2): 5-8.
[7] 廖燕, 贾宝富, 罗正祥. 轴对称收敛型电子枪设计方法再讨论[J]. 强激光与粒子束, 2005, 17(3): 427-430.
[8] WANG S Z, RUAN C J, ZHONG Y.The design of W-band extended interaction klystron electron optics system[C]// IVEC 2012. Monterey, CA: IEEE, 2012.
[9] YUAN X S, ZHANG Y, YANG H, et al.A gridded high compression-ratio carbon nanotube cold cathode electron gun[J]. IEEE Electron Device Letters, 2015, 36(4): 399-401
[10] 陶振凯, 狄杰建, 赵玉侠. 基于60 kV/6 kW电子枪的15 kW电子枪的研制[J]. 焊接技术, 2014, 43(12): 41-43.
[11] 王德. 空间电子束焊枪电子光学系统的设计[D]. 兰州: 兰州理工大学, 2004.
[12] 殷勇, 刘海敬, 陈玲, 等. 高电流密度实心电子束均匀磁场聚焦电子枪的设计[J]. 真空科学与技术学报, 2014, 34(2): 148-152.
[13] 孙博彤, 殷伯华, 王鹏飞, 等. 电子束增材制造聚焦消像散控制技术研究[J]. 热加工工艺, 2022, 51(21):117-126.
[14] 王永杰. 大功率电子枪电子束形成系统的设计研究[D]. 沈阳:东北大学, 2011.
[15] READ M E, JABOTINSK I V, MIRAM G, et al.Design of a girded gun an PRM-focusing structure for a high-power sheet electron beam[J]. IEEE Transactions on Plasma Science, 2005, 33(2): 647-653.
[16] 张秉刚, 赵健, 冯吉才. 电子束表面合金化研究进展[J]. 焊接学报, 2011, 32(11): 108-112.
[17] 周广德, 林达. 电子束焊接装置用电子光学系统的设计与分析[J]. 焊接学报, 1981(4): 162-170.
[18] 王东辉, 陈振华, 王少刚. 铝锂合金电子束焊接数值模拟分析及工艺优化[J]. 材料开发与应用, 2020, 35(1): 58-67.
[19] 桑兴华, 许海鹰, 左从进, 等. 电子枪束源部件结构尺寸对束流品质影响的CST仿真[J]. 航空制造技术,2017(9): 60-64.
[20] WEI Y X, HUANG M G, LIU S Q, et al.Numerial simulation of TWT electron gun[J]. Vacuum, 2013, 92: 90-94.
[1] SHI Xiao-qian, LIU Jia-hui, CHEN Xue-ying, GUO Fang-zhun. Physical Design of High Performance Electron Gun [J]. VACUUM, 2023, 60(3): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .