欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (2): 42-46.doi: 10.13385/j.cnki.vacuum.2024.02.07

• Measurement and Control • Previous Articles     Next Articles

Research on a Chip Level Ion Source for a Micro Mass Spectrometer of Spacecraft

DOU Ren-chao1, CUI Yu-hao1, YU Xin-fa1, FENG Qi1, LIU Kun2, YAN Rong-xin1, SUN Li-chen1, MENG Dong-hui1   

  1. 1. Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China;
    2. School of Mechanical Engineer and Automation, Northeastern University, Shenyang 110819, China
  • Received:2023-08-11 Online:2024-03-25 Published:2024-03-28

Abstract: A chip-level ion source structure with a triode-type field emitter is designed for the micro mass spectrometer of spacecraft, which consists of a gas ionization by electron impact and an ion extraction section. The structure of the ion source is composed of five layers of electrodes. A chip-level ion source prototype was prepared using MEMS technology, and the electron flow, ion flow and stability were tested. The results show that the chip-level ion source can generate an electron current of over 0.357 mA, and the received ion current can reach 527 pA, meeting the functional requirements of the ion source for micro mass spectrometers in space exploration missions.

Key words: MEMS, ion source, deep space exploration, mass spectrometer of spacecraft

CLC Number:  TB774

[1] 王馨悦, 孙越强, 李永平, 等. 质谱计在行星系统与小天体探测中的应用[J]. 深空探测学报, 2017, 4(6):522-528.
[2] VAZQUEZ T, VUPPALA S, AYODEJI I, et al.In situ mass spectrometers for applications in space[J]. Mass Spectrometry Reviews, 2021, 40(5): 670-691.
[3] 付晓辉, 欧阳自远, 邹永廖. 太阳系生命信息探测[J]. 地学前缘, 2014, 21(1): 161-176.
[4] PALMER P T, LIMERO T F.Mass spectrometry in the U.S. space program: past, present, and future[J]. Journal of the American Society for Mass Spectrometry, 2001, 12(6): 656-675.
[5] 董猛, 成永军, 李得天. 空间磁偏转质谱计校准装置设计及校准方法研究[J]. 真空, 2016, 53(6): 28-33.
[6] 陈联, 赵澜, 孙冬花, 等. 航天器推进剂泄漏检测技术研究进展[J]. 真空与低温, 2017, 23(3): 125-130.
[7] HOFFMAN J H, CHANEY R C, HAMMACK H, et al.Phoenix mars mission: the thermal evolved gas analyzer[J]. Journal of the American Society for Mass Spectrometry, 2008, 19(10): 1377-1383.
[8] PERKEL J M.Life science technologies: miniaturizing mass spectrometry[J]. Science, 2014, 343(6173): 928-930.
[9] OUYANG Z, COOKS R G.Miniature mass spectrometers[J]. Annual Review of Analytical Chemistry. 2009, 2(1): 187-214.
[10] SNYDER D T, PULLIAM C J, ZHENG O, et al.Miniature and fieldable mass spectrometers: recent advances[J]. Analytical Chemistry, 2016, 88(1): 2-29.
[11] SYMS R R A, WRIGHT S. MEMS mass spectrometers: the next wave of miniaturization[J]. Journal of Micromechanics & Microengineering, 2015, 26(2): 023001.
[12] CHEN L Y, VELASQUEZ-GARCIA L F, WANG X, et al. A microionizer for portable mass spectrometers using double-gated isolated vertically aligned carbon nanofiber arrays[C]// IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 2007: 843-846.
[13] CHEN L Y, VELASQUEZ-GARCIA L F, WANG X, et al. A microionizer for portable mass spectrometers using double-gated isolated vertically aligned carbon nanofiber arrays[J]. IEEE Transactions on Electron Devices, 2011, 58(7):2149-2158.
[14] HAUSCHILD J P, WAPELHORST E, MÜLLER J. Mass spectra measured by a fully integrated MEMS mass spectrometer[J]. International Journal of Mass Spectrometry, 2007, 264(1): 53-60.
[15] LEE K J, HONG N T, LEE S, et al.Simple fabrication of micro-of-flight mass spectrometer using a carbon nanotube ionizer[J]. Sensors and Actuators B:Chemical, 2017, 243:394-402.
[16] HAN K, LEE Y, JUN D, et al.Field emission ion source using a carbon nanotube array for micro time-of-flight mass spectrometer[J]. Japanese Journal of Applied Physics, 2011, 50(6): 4-7.
[17] YOON H J, SONG S H, HONG N T, et al.Fabrication of two types of micro ion sources for a micro time-of-flight mass spectrometer[J]. Journal of Micromechanics and Microengineering, 2007, 17(8): 1542.
[18] CORNISH T J, BRYDEN W A.Miniature time-of-flight mass spectrometer for a field-portable biodetection system[J]. Johns Hopkins APL Technical Digest, 1999, 20(3): 335-342.
[19] CORNISH T J, ECELBERGER S, BRINCKERHOFF W.Miniature time-of-flight mass spectrometer using a flexible circuitboard reflector[J]. Rapid Communications in Mass Spectrometry, 2000, 14(24): 2408-2411.
[20] WAPELHORST E, HAUSCHILD J P, MÜLLER J. Complex MEMS: a fully integrated TOF micro mass spectrometer[J]. Sensors & Actuators A: Physical, 2007, 138(1): 22-27.
[21] 张浩, 窦仁超, 刘坤, 等.微尺度质谱仪离子源结构设计及离子光学系统仿真[J]. 航天器环境工程. 2019, 36(1): 83-88.
[1] LUO Jun-wen, LI Zhi-fang. Development of Clean Coating Production Line for Printed Circuit Board [J]. VACUUM, 2023, 60(2): 26-29.
[2] LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27.
[3] ZHOU Yuan, RAN Ao, WU Yi-heng, XIE Yuan-hua, LIU Kun. Design and Analysis of High Vacuum Chamber for MEMS Ion Source Testing Based on ANSYS [J]. VACUUM, 2022, 59(3): 16-19.
[4] HU Sheng, YU Jie, WANG Liang, LI Gang. The Optimization Study of the Trigger Structure of a Small Vacuum Arc Ion Source [J]. VACUUM, 2022, 59(2): 11-16.
[5] LUO Wei, LI Zhuo-hui, ZHOU Xiao-dong, WANG Xiao-zhan, SUN Cheng-kai, GUAN Yang, JIN Zhao-feng, LIU Hai-jing. Experimental Study on Thermal Connection Mode in Ultra-low Temperature Region [J]. VACUUM, 2022, 59(1): 64-67.
[6] WANG Jin, WANG Chun-yong, FU Zhao-hui. Research Status of Brazing Seal Technology for Deep Space Exploration Sample Collection [J]. VACUUM, 2020, 57(5): 38-44.
[7] ZHENG Cai-guo, CHEN Qing-chuan, NIE Jun-wei, LI Min-jiu, CHEN Mei-yan. Study on Characteristics of Plasma Polished Quartz Glass [J]. VACUUM, 2020, 57(4): 72-76.
[8] ZHANG Li-peng, DONG Meng, CHENG Yong-jun, WU Hai-yan, QIAN Jie, ZHANG Shu-guang, ZHANG Ying-jun, GE Sai-jin, LI Xiao-xu. Simulation and optimization of electron impact ion source for miniaturized magnetic mass spectrometer [J]. VACUUM, 2019, 56(2): 51-56.
[9] RAN Biao, LI Liu-he. The development and application of anode layer ion source [J]. VACUUM, 2018, 55(5): 51-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .