欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 63-69.doi: 10.13385/j.cnki.vacuum.2024.03.11

• Thin Film • Previous Articles     Next Articles

Influence of Critical CVD Processing Parameters on High Temperature Protective Performance of (Ni,Pt)Al Coatings

LIU Yu-zhuo, WANG Xin, LI Na, ZHEN Zhen, XU Zhen-hua   

  1. Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • Received:2023-10-12 Published:2024-06-04

Abstract: Three kinds of (Ni,Pt)Al coatings were fabricated on nickel-based single crystal superalloy via chemical vapor deposition (CVD) technique at different deposition temperature and deposition pressure. The influence of critical CVD processing parameters on the high temperature protective performance of (Ni,Pt)Al coatings was systematically investigated. The phase constituent, microstructure and chemical content of the three (Ni,Pt)Al coatings were analyzed by XRD, SEM and EDS. The results show that with the increment of deposition temperature, the diffraction peaks of (Ni,Pt)Al coatings shift to a large 2θ-degree at the same deposition pressure. However, at the same deposition temperature, the coating diffraction peaks shift to a small 2θ-degree at the elevated deposition pressure. The grain size of the coating tends to become larger and the thickness of the coating correspondingly turns into thicker accompanying with the increment both of deposition temperature and deposition pressure. After evaluation of isothermal oxidation (1 100 ℃/250 h) and gas hot corrosion (900 ℃/100 h), the oxidation kinetic weight gain of the coating specimen with deposition temperature of 1 080 ℃ and deposition pressure of 300 mbar is less than that of the other two types of coating samples, and the (Ni,Pt)Al coatings prepared by this process has the best high temperature protective properties. Controlling the premature initiation and growth of microcracks in the oxide film at local position on top of coating surface, and reducing the number of microholes caused by hot corrosion are the trend of CVD processing optimization to improve the high temperature oxidation-resistance and corrosion-resistance of (Ni,Pt)Al coatings.

Key words: CVD, (Ni, Pt)Al coating, deposition temperature, deposition pressure, protective performance

CLC Number:  TB31

[1] 戴建伟, 牟仁德, 何利民, 等. 热循环条件下NiCrAlYSi/YSZ热障涂层层间损伤及元素扩散行为研究[J]. 真空, 2021, 58(3): 23-29.
[2] WANG X, ZHEN Z, HUANG G H, et al.Thermal cycling of EB-PVD TBCs based on YSZ ceramic coat and diffusion aluminide bond coat[J]. Journal of Alloys and Compounds, 2021, 873: 159720.
[3] 常振东, 张婧, 牟仁德, 等. NiCrAlYSi粘结层合金相结构与性能研究[J]. 真空, 2022, 59(4): 41-47.
[4] LIU H, XU M M, LI S, et al.Improving cyclic oxidation resistance of Ni3Al-based single crystal superalloy with low-diffusion platinummodified aluminide coating[J]. Journal of Materials Science & Technology, 2020, 54: 132-143.
[5] MORA-GARCIA A G, RUIZ-LUNA H, ALVARADO-OROZCO J M, et al. Microstructural analysis after furnace cyclic testing of pre-oxidized ReneN5/(Ni,Pt)Al/7YSZ thermal barrier coatings[J]. Surface & Coatings Technology, 2020, 403: 126376.
[6] 郭洪波, 宫声凯, 徐惠彬. 新型高温/超高温热障涂层及制备技术研究进展[J]. 航空学报, 2014, 35(10): 2722-2732.
[7] LIU Y Z, ZHEN Z, WANG X, et al.Thermo-physical properties, morphology and thermal shock behavior of EB-PVD thermal barrier coating with DLC YbGdZrO/YSZ system[J]. Materials Today Communications, 2023, 35: 106265.
[8] 王世兴, 李建超, 王秋童, 等. 铂改性铝化物涂层的应用与发展[J]. 热喷涂技术, 2020, 12(3): 18-29.
[9] 柳泉, 阳颖飞, 鲍泽斌, 等. PtAl2单相涂层的高温抗氧化性能及失效机制研究[J]. 金属学报, 2014, 50(9): 1102-1108.
[10] ZHEN Z, WANG X, SHEN Z Y, et al.Phase stability, thermo-physical property and thermal cycling durability of Yb2O3 doped Gd2Zr2O7 novel thermal barrier coatings[J]. Ceramics International, 2022, 48(2): 2585-2594.
[11] WANG X, ZHEN Z, LI N, et al.Electron beam physical vapor deposited YbGYZ thermal barrier coatings: Phase stability, thermo-physical properties and thermal shock behavior[J]. Open Ceramics, 2022, 11: 100287.
[12] 余春堂, 阳颖飞, 鲍泽斌, 等. 先进高温热障涂层用高性能粘接层制备及研究进展[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[13] 鲍泽斌, 蒋成洋, 朱圣龙, 等. 高温防护金属涂层的发展及活性元素效应[J]. 航空材料学报, 2018, 38(2): 21-31.
[14] MEHBOOB G, LIU M J, XU T, et al.A review on failure mechanism of thermal barrier coatings and strategies to extend their lifetime[J]. Ceramics International, 2020, 46(7): 8497-8521.
[15] ZHEN Z, WANG X, SHEN Z Y, et al.Thermal cycling behavior of EB-PVD rare earth oxides co-doping ZrO2-based thermal barrier coatings[J]. Ceramics International, 2021, 47(16): 23101-23109.
[16] 张磊, 吴勇, 顿易章, 等. 采用CVD法制备空心叶片内腔铝化物涂层[J]. 金属热处理, 2019, 44(5): 124-128.
[17] 王鑫,甄真, 牟仁德, 等. 沉积真空度对铝化物涂层相结构和高温氧化行为的影响[J]. 真空, 2022, 59(5): 20-27.
[18] GUEVEL Y L, GREGOIRE B, CRISTOBAL M J, et al.Dissolution and passivation of aluminide coatings on model and Ni-based superalloy[J]. Surface & Coatings Technology, 2019, 357: 1037-1047.
[19] ZHANG C Y, MA Z, DONG S Z, et al.High-temperature oxidation behaviour of refurbished (Ni, Pt) Al coating on Ni-based superalloy at 1100 ℃[J]. Corrosion Science, 2021, 187: 109521.
[20] LENG W, PILLAI R, NAUMENKO D, et al.Effect of substrate alloy composition on the oxidation behaviour and degradation of aluminide coatings on two Ni base superalloys[J]. Corrosion Science, 2020, 167: 108494.
[21] 白明远, 王鑫, 甄真, 等. 稀土锆酸盐热障涂层的相稳定性和界面结合性能研究[J]. 真空, 2021, 58(4): 12-20.
[22] YANG Y F, REN S X, REN P, et al.Hot corrosion and cyclic oxidation performance of a PtAl2-dispersed (Ni,Pt)Al coating prepared by low-activity high-temperature aluminizing[J]. Journal of Alloys and Compounds, 2022, 911: 164978.
[23] 史振学, 刘世忠, 王效光, 等. 第2代单晶高温合金DD6的燃气热腐蚀行为[J]. 钢铁研究学报, 2015, 27(5): 61-64.
[24] YU Z, DHARMASENA K P, HASS D D, et al.Vapor deposition of platinum alloyed nickel aluminide coatings[J]. Surface & Coatings Technology, 2006, 201(6): 2326-2334.
[1] YU Da-yang, WU Gai. Numerical Simulation of the Influence of Gas Distribution and Film Deposition Process in MOCVD Reactor with Large-sized Square Carrier [J]. VACUUM, 2024, 61(2): 22-28.
[2] HUANG Guang-hong, LI Di, LI Na, ZHEN Zhen, WANG Xin, XU Zhen-hua. Effect of H2 on the Graphene Growth at Different Stages in the Plasma Enhanced Chemical Vapor Deposition Process [J]. VACUUM, 2024, 61(1): 34-40.
[3] WANG Xin, ZHEN Zhen, MU Ren-de, HE Li-min, XU Zhen-hua. Effect of Deposition Pressure on Phase Structure and High Temperature Oxidation Behavior of Aluminide Coatings [J]. VACUUM, 2022, 59(5): 20-27.
[4] WANG Dong-yuan, ZHOU Tian, CHEN Qiang, LIU Zhong-wei. Research Status and Progress of Preparation Methods of Palladium Thin Films [J]. VACUUM, 2022, 59(5): 7-13.
[5] WANG Li-zhe, CAI Yan, ZHNG Ru-jing, HE Li-min, MU Ren-de. Influence of Aluminide Coating Prepared by Chemical Vapor Depositionon High-Temperature Protective Performance of Thermal Barrier Coating on Single Crystal Superalloy [J]. VACUUM, 2022, 59(4): 56-63.
[6] WAN Shu-hong, LIN Jing, FENG Shuai. Research Progress of Diamond Coated Tools Prepared by Hot Filament CVD [J]. VACUUM, 2022, 59(1): 40-47.
[7] LIU Lu-sheng, ZHAI Zhao-feng, YANG Bing, SONG Hao-zhe, YU Qi, SHI Dan, YUAN Zi-yao, LU Zhi-gang, CHEN Bin, ZHOU Mei-qi, LI Hai-ning, YU Biao, HUANG Nan, JIANG Xin. Development of Hot Filament Chemical Vapor Deposition Equipment for Continuous Diamond Film Preparation [J]. VACUUM, 2020, 57(6): 1-4.
[8] GAO Chao, ZHANG Ji-feng, TANG Rong. Development of CVD Reaction Furnance for Graphene Preparation [J]. VACUUM, 2020, 57(3): 30-33.
[9] WANG Xin, XU Zhen-hua, PENG Chao, DAI Jian-wei, HE Li-min, MU Ren-de. High Temperature Protection Properties of Pt Modified Aluminide Coating on the Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 11-16.
[10] LI Lin, LI Cheng-ming, YANG Gong-shou, HU Xi-duo, YANG Shao-yan, SU Ning. Numeric simulation of three-layer hot-wall metal organic chemical vapor deposition (MOCVD) flow fields [J]. VACUUM, 2019, 56(1): 34-38.
[11] ZHAO Yan-hui, SHI Wen-bo, LIU Zhong-hai, LIU Zhan-qi, YU Bao-hai. Effect of deposition process parameters on arc ion plating [J]. VACUUM, 2018, 55(6): 49-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .