欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (3): 57-62.doi: 10.13385/j.cnki.vacuum.2024.03.10

• Thin Film • Previous Articles     Next Articles

Effect of Deposition Parameters on Microstructure and Optical Properties of TiO2 Nanofilms

JI Jian-chao1,2, YAN Yue1,2, HA En-hua1,2   

  1. 1. Beijing Institute of Aeronautical Materials Co. LTD., Beijing 100095, China;
    2. Beijing Engineering Centre of Advanced Structural Transparencies for the Modern Traffic System, Beijing 100095, China
  • Received:2023-10-26 Published:2024-06-04

Abstract: Nano-sized TiO2 optical films were deposited on PMMA by DC pulsed magnetron sputtering method. The effects of deposition power, substrate temperature on the structure and optical properties of TiO2 films were studied. The optical properties, elemental composition, crystallization properties and microstructure of the films were analyzed by means of elliptic polarization analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), spectrophotometer and atomic force microscope (AFM). The results show that with the increase of deposition power, the oxygen content of the film decreases, the particle size of the film decreases, and the refractive index increases, while the transmittance and reflectivity of the visible light band decreases. The increasing substrate temperature reduces the deposition rate of the film and promotes the aggregation of the film particles. The refractive index and visible light transmittance both increase with the substrate temperature. The band gap of TiO2 film ranges between 3.12-3.16 eV and decreases with the increase of deposition power and substrate temperature.

Key words: TiO2 thin film, magnetron sputtering, microstructure, optical property

CLC Number:  TB34

[1] CUCE E, CUCE PM, RIFFAT S.TiO2 nano-coated thin film PV glazing with superior thermal resistance, self-cleaning, electricity generation and adaptive optical control[J]. International Journal of Low-Carbon Technologies, 2022, 17:130-139.
[2] DOGHMANE H E, TOUAM T, CHELOUCHE A, et al.investigation of the influences of post-thermal annealing on physical properties of TiO2 thin films deposited by RF sputtering[J]. Semiconductors, 2020, 54: 268-273.
[3] LIU Y Y, QIAN L Q, GUO C, JIA X, et al.Natural superhydrophilic TiO2/SiO2 composite thin film Deposited by radio frequence magnetron sputtering[J].Journal of Alloys and Compounds, 2009, 479(1/2): 532-535.
[4] RUDAKOVA A V, EMELINE A V, ROMANYCHEV A I, et al.Photoinduced hydrophilic behavior of TiO2 thin film on Si substrate[J]. Journal of Alloys and Compounds,2021,872: 159746.
[5] MITHUN M H, SAYED A, RAHAMAN I.The Effect of Band-Gap on TiO2 thin film considering various parameters[J]. Proceedings of Engineering and Technology Innovation, 2021, 19: 45-52.
[6] 蔺增, 吕少波, 林铁源, 等. 面向心血管应用的电子束蒸发氧化钛薄膜的特性——润湿性与血液相容性[J]. 东北大学学报(自然科学版), 2009, 30(6): 873-876.
[7] 谭宇, 梁宏军, 刘永强, 等. 用二氧化钛、二氧化硅和氟化镁膜料镀制0.4 μm~1.1 μm超宽带增透膜[J]. 应用光学,2007, 28(5): 623-626.
[8] SAIKIA P, SAIKIA B K, BHUYAN H.Study on the effect of hydrogen addition on the variation of plasma parameters of argon-oxygen magnetron glow discharge for synthesis of TiO2 films[J]. AIP Advances, 2016, 6(4): 045206.
[9] BAKER L R, SEO H, HERVIER A,et al.Generation of highly N-type, defect passivated transition metal oxides using plasma fluorine insertion:WO2011US65587[P]. [2021-12-16].
[10] HEO C H, LEE S B, BOO J H, et al.Depositon of TiO2 thin film using RF magnetron sputtering method and study of their surface characteristics[J].Thin Solid Film,2005,475(1/2):183-188.
[11] KIM W G, RHEE S W.Effect of post annealing on the resistive swicthing of TiO2 thin film[J]. Microelectronic Engineering, 2009, 86(11): 2153-2156.
[12] MIN Y, LIU X Z,HU L F, et al.Effects of Nb doping on microstructure and photocatalytic properties of TiO2 thin film[J]. Desalination and water treatment Science and engineering, 2016, 57(15): 6910-6915.
[13] XIE H, LIU B S, ZHAO X J, et al.Facile process to greatly improve the photocatalytic activity of the TiO2 thin film on window glass for the photodegradation acetone and benzene[J]. Chemical engineering journal, 2016, 284: 1156-1164.
[14] SOUSSI A, HSSI A A, BOULKADAT L, et al.Electronic and optical properties of TiO2 thin films: combined experimental and theoretical study[J].Journal of Electronic Materials, 2021,50: 4497-4510.
[15] 潘永强, 朱昌, 弥谦, 等. 电子束蒸发TiO2薄膜的光学特性[J]. 应用光学, 2004, 25(5): 53-55.
[16] KRUCHININ V N, PEREVALOV T V, ATUCHIN V V, et al.Optical Properties of TiO2 films deposited by reactive electron beam sputtering[J].Journal of Electronic Materials, 2017, 46: 6089-6095.
[17] NGUYEN H H, KIM D J, PARK D W, et al.,Effect of initial precursor concentration on TiO2 thin film nanostructures prepared by PCVD system[J]. Journal of Energy Chemistry, 2013, 22(3): 375-381.
[18] ZHOU M, ROUALDÈS S, ZHAO J, et al. Nanocrystalline TiO2 thin film prepared by low-temperature plasma-enhanced chemical vapor deposition for photocatalytic applications[J].Thin Solid Films,2015,589: 770-777.
[19] JOLIVET A, LABBÉ C, FRILAY C,et al.Structural, optical, and electrical properties of TiO2 thin films deposited by ALD: Impact of the substrate, the deposited thickness and the deposition temperature[J]. Applied Surface Science, 2023, 608:155214.
[20] HUSSIN R O, CHOY K L, HOU X H.Growth of TiO2 Thin Films by Atomic Layer Deposition (ALD)[J]. Advanced Materials Research, 2016, 1133: 352-356.
[21] JOLIVET A, LABBÉ C, FRILAY C, et al.Structural, optical, and electrical properties of TiO2 thin films deposited by ALD: Impact of the substrate, the deposited thickness and the deposition temperature[J]. Applied Surface Science,2023,608:155214.
[22] 顾培夫. 薄膜技术[M].杭州:浙江大学出版社, 1990:38-56.
[23] 薛增泉, 吴全德, 李洁. 薄膜物理[M]. 北京:电子工业出版社, 1991: 231-252.
[24] SENTHILKUMAR V, JAYACHANDRAN M, SANJEEVIRAJA C.Preparation of anatase TiO2 thin films for dye-sensitized solar cells by DC reactive magnetron sputtering technique[J]. Thin Solid Films, 2010,519:991-994.
[25] BANG K H, HWANG D K, LIM S W, et al.Effects of growth temperature on the properties of ZnO/GaAs prepared by metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2003, 250(3/4): 437-443.
[1] LI Can-lun, NI Jun, GUO Teng, HAN Wei, WANG Fei, QI Song-song, LI Hui, FAN Xiao-peng, FAN Qiu-lin. Research on Optical Properties of CPI Film Second Surface Mirror [J]. VACUUM, 2024, 61(3): 70-73.
[2] LI Can-min, DONG Zhong-lin, XIA Zheng-wei, ZHANG Xin-feng, WEI Rong-hua. Microstructure and Properties of TiCr-based Nanocomposite Coatings by Plasma Enhanced Magnetron Sputtering [J]. VACUUM, 2024, 61(2): 10-15.
[3] LI Shu-feng, WANG Li, GAO Dong-wen. Studies on the Microstructure and Optical Properties of Nanocrystalline ZnSe:Cox Thin Film Prepared by Pulsed Laser Deposition [J]. VACUUM, 2024, 61(1): 41-46.
[4] LIU Wen-li, LIU Xu, YIN Xiang. Development of Rectangular Planar Magnetic Control Target with Dynamic Magnetic Field [J]. VACUUM, 2023, 60(5): 47-50.
[5] ZHANG Yan-peng, CAO Zhi-qiang, FU Qiang, CAO Lei, LIU Xu. Study of the Influence of Process Parameters of Copper Coating Fabricated by Roll to Roll Machine on Electronic Property of Composite Current Collector [J]. VACUUM, 2023, 60(4): 8-12.
[6] YU Kang-yuan, HE Yu-dan, YANG Bo, LUO Jiang-shan. Effect of Sputtering Voltage on Microstructure and Properties of Cu Foils Deposited by High Power Impulse Magnetron Sputtering [J]. VACUUM, 2023, 60(3): 1-4.
[7] XIANG Yu-chun, ZHU Jian-lei, YUAN Ya. Effect of Oxygen Pressure on the Properties of CuO Films Grown by Pulse Laser Deposition [J]. VACUUM, 2023, 60(3): 42-45.
[8] ZHANG Han-yan, ZHENG Dan-xu, SHEN Yi, CHEN Yu-yun. Research of Insulation of Silicon Oxide Film Produced by Medium Frequency Magnetron Sputtering [J]. VACUUM, 2023, 60(2): 34-38.
[9] ZHANG Jian, QI Zhen-hua, LI Jian-hao, NIU Xia-bin, XU Quan-guo, ZONG Shi-qiang. Growth, Characterization of ITO Films Deposited by DC Magnetron Sputtering [J]. VACUUM, 2022, 59(6): 45-50.
[10] ZHAO Qi, MAN Yu-yan, LI Su-ya, LI Song-yuan, LI Lin. Research on Performance Controlling Method of Fluorocarbon Nanostructured Film for Dry Reactors [J]. VACUUM, 2022, 59(6): 51-55.
[11] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
[12] XING Yin-long, WU Jie-feng, PEI Shi-lun, LIU Zhi-hong, LI Bo, LIU Zhen-fei, MA Jian-guo. Vacuum Electron Beam Welding of Semi-Y-state Oxygen Free Copper Plate in Boat Shape RF Cavity [J]. VACUUM, 2022, 59(5): 69-73.
[13] ZHANG Jian, LI Jian-hao, QI Zhen-hua. Effect of Process Parameters on SiC Film Properties under DC Magnetron Sputtering [J]. VACUUM, 2022, 59(4): 52-55.
[14] FU Xue-cheng, WU Li-ying, LUAN Zhen-xing, MAO Hai-ping, WANG Ying. Modification of Tungsten Crucible for Electron Beam Evaporation of Silver Film [J]. VACUUM, 2022, 59(3): 41-45.
[15] CHANG Zhen-dong, DENG Zhong-hua, SUN Rong-zhen, MU Ren-de, HU Jiang-wei. Effect of Matrix Surface Microstructure on the Adhesion of PVD Coating [J]. VACUUM, 2022, 59(3): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .