欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (6): 21-25.doi: 10.13385/j.cnki.vacuum.2024.06.04

• Thin Film • Previous Articles     Next Articles

Study on Film Formation Uniformity of Horizontally Moving Substrate by Array Evaporation Sources

TANG Zheng   

  1. Suzhou Fangsheng Optoelectronics Co., Ltd., Suzhou 215211, China
  • Received:2023-09-07 Online:2024-11-25 Published:2024-11-29

Abstract: The formula of film thickness distribution was derived mainly by the discrete mathematical integration tool, and the evaporation of array evaporation sources with non-cosine evaporation law in practical engineering project was described. The film-forming distribution law of translational substrate with different array evaporation sources was studied, and the spatial layout of evaporation sources was designed according to this law. The calculation method and distribution law of the film-forming uniformity of translational substrate with array evaporation source were mainly studied, and the influence of the open hole configuration of the evaporation source on the film thickness distribution of the upper substrate was analyzed. The results show that the overall film thickness of the substrate with array evaporation source shows intermediate periodic fluctuations, and the distribution at both ends is relatively low. It is necessary to maintain the geometric array configuration of relative dislocation and reduce the hole spacing at both ends to obtain a more reasonable and uniform film thickness distribution.

Key words: vacuum coating, array particle source, film-forming uniformity, non-cosine law

CLC Number:  O552.3

[1] 唐晋发, 顾培夫, 刘旭, 等. 现代光学薄膜技术[M]. 杭州:浙江大学出版社, 2006: 271-285.
[2] 付秀华, 赵迪, 卢成, 等. 单一蒸发源膜厚分布的均匀性[J]. 光学学报, 2019, 39(12): 417-421.
[3] 潘栋梁, 熊胜明, 张云洞, 等. 行星夹具膜厚均匀性计算[J]. 强激光与粒子束, 2000, 12(3): 277-280.
[4] WANG B, FU X, SONG S, et al.Simulation and optimization of film thickness uniformity in physical vapor deposition[J]. Coatings, 2018, 8(9): 325.
[5] SHISHKOV M, POPOV D.Thickness uniformity of thin films deposited on a flat substrate by sputtering of a target with rotational symmetry[J]. Vacuum. 1991, 42(15):1005-1008.
[6] 董磊, 等.不同类型蒸发源对平面夹具薄膜均匀性的影响[J].强激光与粒子束, 2005, 17(10): 1518-1522.
[7] JAING C C.Designs of masks in thickness uniformity[C]// 5th International Symposium on Advanced Optical Manufacturing and Testing Technologies. Dalian, China: SPIE, 2010.
[8] ABZALOVA G I,SABIROV R S,MIKHAILOV A V.Depositing uniform-thickness coatings on large surfaces by means of electron-beam evaporation in vacuum[J].Journal of Optical Technology, 2005, 72(10): 799-801.
[9] SASSOLAS B, FLAMINIO R, FRANC J, et al.Masking technique for coating thickness control on large and strongly curved aspherical optics[J]. Applied Optics. 2009,48(19): 3760-3765.
[10] 方明, 郑伟军, 吴明, 等. 平面行星夹具均匀性修正挡板设计方法研究[J]. 真空科学与技术学报, 2006, 26(4): 286-289.
[11] 何兴伟, 金林枫, 王慧斌. 论基片平移对蒸发镀膜膜厚均匀性的改善[J]. 中国高新区, 2017(6): 106-108.
[12] 郑文汀, 戴德星. 膜层厚度分布与蒸发源相对位置的设计探讨[J]. 薄膜科学与技术, 1991, 4(4): 46-54.
[13] 潘永刚, 刘政, 王奔, 等. 电子束蒸发球面夹具系统膜厚均匀性的研究[J]. 激光与光电子学进展, 2021,58(5): 323-327.
[14] 杨芳, 武忙虎, 王浩亮, 等. 结构化晶圆表面厚胶喷涂工艺[J]. 微纳电子技术, 2019, 56(11): 933-938.
[15] 王长军, 熊胜明. 大口径光学元件薄膜厚度均匀性修正[J]. 强激光与粒子束, 2007, 19(7): 1153-1157.
[16] 朱元强. 半球透镜膜厚分布分析[J]. 光学与光电技术, 2020, 18(1): 59-62.
[17] 夏志林, 薛亦渝, 郭培涛, 等. 挖坑效应对球形夹具下电子束蒸发沉积薄膜厚度均匀性的影响[J]. 材料导报, 2009, 23(14): 115-18.
[18] 郭春, 孔明东, 柳存定, 等. 平面行星系统修正挡板校正膜厚均匀性[J]. 光学学报, 2013, 33(2): 284-288.
[19] 吴伟, 王济洲, 熊玉卿, 等.半球形基底镀膜膜厚均匀性理论分析[J]. 真空科学与技术学报, 2014, 34(4):320-324.
[20] 艾万君, 熊胜明. 3.6 m大口径镀膜机膜厚均匀性分析[J]. 光电工程, 2011, 38(11):73-78.
[21] 徐树深, 梅丽文, 张建光. 镀膜装置蒸发源发射形态与膜厚分布[J]. 真空, 2010, 47(6): 23-25.
[22] 张伟, 苌国强. 气相沉积薄膜结构均匀性的理论分析[J]. 真空. 1992, 29(4): 8-12.
[23] 吕立冬, 李新南. 用于大尺寸镜面镀膜的热蒸发沉积系统的研究[J]. 真空, 2008, 45(2): 57-59.
[24] 于贺, 吴志明, 王涛, 等. 平面磁控溅射薄膜厚度均匀性的研究概述[J]. 真空, 2010, 47(3): 9-15.
[25] 夏志林, 赵元安, 黄才华, 等. 基于平板夹具的电子束蒸发沉积薄膜中的挖坑效应分析[J]. 真空, 2008, 45(6): 12-16.
[26] 张向秀, 张鹏飞, 赵瑾珠, 等. 基片的运动方式对磁控溅射矩形靶镀膜均匀性的影响[J]. 真空, 2016, 53(4): 1-5.
[27] 刘思用, 侯军民. 磁控溅射光学膜均匀性改进[J]. 真空, 2017, 54(2): 68-70.
[1] LI Xiang, JIANG Xiao-jiao, ZHAN Chun-ming, LIU Ang, SUN Ning, LI Jia-ping. Research on Design Method of Liquid Cooled Heater for Vacuum Coating Equipment Based on System Regression Model [J]. VACUUM, 2024, 61(4): 6-11.
[2] SUN Bin, LIU Xing-long, XU Cheng-yuan, WANG Qing, LIN Zeng. Vacuum Coating Helps Low-carbon Manufacturing and Sustainable Development [J]. VACUUM, 2023, 60(3): 12-17.
[3] YOU Jin-shan. SIS Design and Application for Vacuum Coating Equipment [J]. VACUUM, 2021, 58(5): 80-84.
[4] DENG Wen-yu, WANG Peng-yang, QI Li-jun, DUAN Yong-li, SUN Bao-yu, WAN Yi, ZHANG Xin-jie, XIE Yuan-hua, DU Guang-yu, LIU Kun. Research Progress on Corrosion Mechanism, Protection of NdFeB Permanent Magnet Materials [J]. VACUUM, 2020, 57(5): 45-51.
[5] WANG Fu-zhen. Heat Treatment and Vacuum Coating Towards Integration [J]. VACUUM, 2020, 57(5): 1-6.
[6] ZHANG Fen-li, DENG Jing-lian, WANG Jie-feng, MENG Qing-yuan. Study on the pretreatment cleaning process of steel tube before coating [J]. VACUUM, 2018, 55(6): 60-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .