欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2025, Vol. 62 ›› Issue (1): 37-43.doi: 10.13385/j.cnki.vacuum.2025.01.06

• Thin Film • Previous Articles     Next Articles

Development of Quantitative Analysis Software for Film Depth Profiling

LU Meijie1, ZHENG Zihong2, GAO Weinan2, ZHENG Haozhi3, LIU Gongwen1, LIAN Songyou1, XU Rongwang4, WANG Jiangyong1,4   

  1. 1. Department of Physics, College of Science, Shantou University, Shantou 515063, China;
    2. Department of Computer Science, School of Mathematics and Computer Science, Shantou University, Shantou 515063, China;
    3. Department of Art Design, Cheung Kong Institute of the Arts, Shantou University, Shantou 515063, China;
    4. Shuhao Instrument Technology Co., Ltd., Kunshan 215343, China
  • Received:2024-03-07 Online:2025-01-25 Published:2025-02-10

Abstract: Sputter depth profiling has been widely used to characterize the depth distribution of elements in thin films. However, the complex sputtering process involved and the diversity of sample morphology may interfere with the accuracy of analysis. Aiming at the problem, the thin films depth profiling is briefly introduced firstly. Then, the physical backgrounds of the quantitative depth profiling and the expansion for the quantitative analysis of high-resolution depth profiling data are presented. A depth profiling quantitative analysis software based on the C# programming language is developed, the modules of the software is introduced in detail, and the specific implementation of the software written in C# is demonstrated. The software utilizes an MRI model and integrates functions for the transformation, convolution, and deconvolution of in-depth analysis data, which is capable of performing quantitative analysis on data from micro-area analysis techniques such as SIMS, AES, and XPS. Through optimized algorithms, the software achieves high-precision calculation of the depth resolution function. Users can input experimental data through an intuitive interface, and the software will automatically process the data and generate visual results. This software provides a convenient and efficient tool for general users, significantly enhancing the operability and accuracy of thin film depth profiling quantitative analysis.

Key words: quantitative depth profiling, MRI model, convolution, deconvolution, software

CLC Number:  O484.2;TP391.9

[1] 马泽钦, 李海鸣, 庄妙霞, 等. 高分辨率钼/硅纳米多层膜TOF-SIMS和Pulsed-RF-GDOES深度谱的定量分析[J]. 真空, 2023, 60(1): 17-22.
[2] 康红利, 劳珏斌, 刘毅, 等. SIMS溅射深度剖析的定量分析[J]. 真空, 2015, 52(2): 44-49.
[3] 康红利, 简玮, 韩逸山, 等. 溅射深度剖析定量分析及其应用研究进展[J]. 汕头大学学报(自然科学版),2016,31(2):3-24.
[4] 杨浩, 马泽钦, 蒋洁, 等. 辉光放电发射光谱高分辨率深度谱的定量分析[J]. 材料研究与应用,2021,15(5):474-485.
[5] BELENGUER P, GANCIU M, GUILLOT P, et al.Pulsed glow discharges for analytical applications[J]. Spectrochimica Acta Part B, 2009, 64(7): 623-641.
[6] WIKE M, TEICHERT G, GEMMA R, et al.Glow discharge optical emission spectroscopy for accurate and well resolved analysis of coating and thin films[J]. Thin Solid Films, 2011, 520(5): 1660-1667.
[7] 周刚, 吕凯, 刘远鹏, 等. 柔性功能薄膜辉光光谱深度分辨率分析[J]. 真空,2020,57(4):1-5.
[8] 梁家伟, 韩逸山, 庄素娜, 等. 辉光放电发射光谱在材料成分-深度分析中的应用[J]. 真空, 2017, 54(5): 39-46.
[9] 胡立泓, 张锦桐, 王丽云, 等. 高阻隔铝塑膜辉光放电发射光谱深度谱测量参数的优化[J]. 光谱学与光谱分析, 2022,42(3):954-960.
[10] HOFMANN S.Atomic mixing, surface roughness and information depth in high-resolution AES depth profiling of a GaAs/AlAs superlattice structure[J]. Surface and Interface Analysis, 1994, 21(9): 673-678.
[11] HOFMANN S.Sputter depth profile analysis of interfaces[J]. Reports on Progress in Physics, 1998, 61(7):827-888.
[12] HOFMANN S. KESLER V.Quantitative AES depth profiling of a Ge/Si multilayer structure[J]. Interfaces and Thin Films, 2002, 33(6): 461-471.
[13] ZIEGLER J F, BIERSACK J P, LITTMARK U.The stopping range of ions in solids[M]. New York: Pergamon Press, 1985.
[14] HOFMANN S.Characterization of nanolayers by depth sputter depth profiling[J]. Applied Surface Science, 2005,241(1/2): 113-121.
[15] SEAH M P, LEA C.Depth resolution in composition profiles by ion sputtering and surface analysis for single-layer and multilayer structures on real substrates[J]. Thin Solid Films, 1981, 81(3): 257-270.
[16] KANG H, LAO J B, LI Z P, et al.Reconstruction of GaAs/AlAs superlattice multilayer structure by quantification of AES and SIMS sputter depth profiles[J]. Applied Surface Science, 2016, 388: 584-588.
[17] WANG J Y, HOFMANN S, ZALAR A, et al.Quantitative evaluation of sputtering induced surface roughness in depth profiling of polycrystalline multilayers using Auger electron spectroscopy[J]. Thin Solid Films, 2003, 444(1/2):120-124.
[18] LIAN S Y, WANG Z J, WANG C L, et al.Deconvolution method for obtaining directly the original in-depth, distribution of composition from measured sputter depth profile[J]. Vacuum, 2019, 166(5): 196-200.
[19] 李静, 谭张华, 刘星星, 等. 利用遗传算法定量分析Ni/Cr 多层膜俄歇深度谱[J]. 真空, 2021, 58(4):6-11.
[20] WANG C L, LI J, LIU X X, et al.Optimization of the two parameters in the deconvolution procedure for obtaining the original in-depth distribution of composition from measured sputter depth profile by genetic algorithm[J]. Vacuum, 2021, 184: 109866.
[21] LI T T, ZHUANG X M, LI H M, et al.Optimization of deconvoluted parameter for the quantification of high-resolution SIMS depth profiles[J]. Vacuum, 2023, 215: 112342.
[22] 徐顺, 张宝花, 刘倩, 等. eMD:基于异构计算的大规模分子动力学模拟软件[J]. 数据与计算发展前沿,2024,6(1):21-34.
[1] ZHONG Feng-min, WANG Sui-peng, ZHENG Jin-quan, YANG Hao, Siegfried Hofmann, XU Cong-kang, WANG Jiang-yong. Comparison of the Analytical Expressions of Three Quantitative Sputtering Depth Profiling Models [J]. VACUUM, 2023, 60(3): 24-41.
[2] MA Ze-qin, LI Hai-ming, ZHUANG Miao-xia, LI Ting-ting, LI Zhen-zhou, JIANG Jie, LIAN Song-you, WANG Jiang-yong, XU Cong-kang. Quantification of High-resolution TOF-SIMS and Pulsed-RF-GDOES Depth Profiles of Mo/Si Nano-multilayers [J]. VACUUM, 2023, 60(1): 17-22.
[3] YANG Su-xia, SHEN Wen-zhuo. Design of Control System Based on Intelligent Composite Coating Equipment [J]. VACUUM, 2022, 59(1): 68-73.
[4] LI Jing, TAN Zhang-hua, LIU Xing-xing, CHEN Ying-lin, LI Hao-wen, YANG Hao, WANG Chang-lin, WANG Jiang-yong, XU Cong-kang. Quantitative Analysis of AES Depth Profiles for Ni/Cr Multilayered Film by Genetic Algorithms [J]. VACUUM, 2021, 58(4): 6-11.
[5] LI Xin, LONG Xin-ping, CHENG Huai-yu, LIU Qi. Theoretical Calculation of Ejectors and the Development of Software [J]. VACUUM, 2021, 58(3): 65-70.
[6] HU Chun-dong, LANG Jia-qi, XIE Yuan-lai, WANG Ming-xiang, ZHANG Zhao-yuan, NBI Team. Simulation of Gas Temperature Distribution in Cryo-Vacuum Space for a Neutral Beam Injector [J]. VACUUM, 2020, 57(5): 75-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .