欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (5): 13-16.doi: 10.13385/j.cnki.vacuum.2023.05.02

• 真空应用 • 上一篇    下一篇

微阵列结构柔性压力传感器研究进展*

张哲, 李建昌   

  1. 东北大学机械工程与自动化学院真空流体工程研究中心,辽宁 沈阳 110819
  • 收稿日期:2022-06-01 出版日期:2023-09-25 发布日期:2023-09-26
  • 通讯作者: 李建昌,教授,博士生导师。
  • 作者简介:张哲(1997-),男,河南驻马店人,硕士生。
  • 基金资助:
    *国家自然科学基金(51773030)

Progress on Microarray-structured Flexible Pressure Sensors

ZHANG Zhe, LI Jian-chang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2022-06-01 Online:2023-09-25 Published:2023-09-26

摘要: 柔性压力传感器因形状易控、体积小、机械性能好等优点,成为柔性电子器件领域的研究热点之一。传统工作原理下,除先进功能材料外,微阵列结构的引入对进一步提升器件灵敏度、响应时间等综合性能具有重要意义。本文从材料选择、微阵列分布方式、构造方法及传感特性等方面对微阵列结构柔性压力传感器的研究进展进行了综述。首先,归纳了微阵列构造常用材料;其次,对比了基于不同分布方式的微阵列结构;随后,总结了微阵列结构的制备工艺;最后,重点讨论了几种常见微阵列柔性压力传感器的传感特性机理。未来应进一步从传感器力-电转换机制、多元环境下器件工作稳定性等方面进行深入探究,以期为开发超高性能柔性传感器件提供理论基础。

关键词: 柔性电子, 柔性压力传感器, 微阵列结构, 传感特性

Abstract: Recently, microarray-structured flexible pressure sensors have attracted extensive attention owing to their controllable shape, small size and high mechanical properties. In addition to the selection of advanced functional materials, the introduction of microarray structures for flexible pressure sensors under traditional working principles is important to further enhance the sensing performance of the device in terms of sensitivity and response time. In this paper, the materials, distribution of microarray, fabrication strategies and sensing characteristics are systematically reviewed. Firstly, the common materials used to fabricate microarray-structured flexible pressure sensors are summarized. Secondly, the different distribution types of the microarray structure are compared. The fabrication strategies are then compared and summarized in detail. Finally, the mechanisms of sensing characteristics of several common-used microarray-structured flexible pressure sensors are mainly discussed. In the future, the force-electric conversion mechanism of the sensor and the stability of the device under multiple environments should be further investigated in order to provide a theoretical basis for the development of flexible pressure sensors with ultra-high sensing performance.

Key words: flexible electronics, flexible pressure sensor, microarray structure, sensing characteristics

中图分类号:  TB43;TN305.8

[1] WANG X, ZHANG H, YU R, et al.Dynamic pressure mapping of personalized handwriting by a flexible sensor matrix based on the mechanoluminescence process[J]. Advanced Materials, 2015, 27(14): 2324-2331.
[2] ILAMI M, BAGHERI H, AHMED R, et al.Materials, actuators, and sensors for soft bioinspired robots[J]. Advanced Materials, 2021, 33(19): 2003139.
[3] CHORTOS A, LIU J, BAO Z.Pursuing prosthetic electronic skin[J]. Nature Materials, 2016, 15(9): 937-950.
[4] LAI Y C, YE B W, LU C F, et al.Extraordinarily sensitive and low-voltage operational cloth-based electronic skin for wearable sensing and multifunctional integration uses, a tactile-induced insulating-to-conducting transition[J]. Advanced Functional Materials, 2016, 26(8): 1286-1295.
[5] MU J, HOU C, WANG G, et al.An elastic transparent conductor based on hierarchically wrinkled reduced graphene oxide for artificial muscles and sensors[J]. Advanced Materials, 2016, 28(43): 9491-9497.
[6] CHU Y, ZHONG J, LIU H, et al.Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system[J]. Advanced Functional Materials, 2018, 28(40): 1803413.
[7] RUTH S R A, FEIG V R, TRAN H, et al. Microengineering pressure sensor active layers for improved performance[J]. Advanced Functional Materials, 2020, 30(39): 2003491.
[8] QIU J, GUO X, CHU R, et al.Rapid-response,low detection limit, and high-sensitivity capacitive flexible tactile sensor based on three-dimensional porous dielectric layer for wearable electronic skin[J]. ACS Applied Materials & Interfaces, 2019, 11(43): 40716-40725.
[9] ZHAO T, LI T, CHEN L, et al.Highly sensitive flexible piezoresistive pressure sensor developed using biomimetically textured porous materials[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29466-29473.
[10] PAYNE M E, ZAMARAYEVA A, PISTER V I, et al.Printed, flexible lactate sensors: design considerations before performing on-body measurements[J]. Scientific Reports, 2019, 9: 13720.
[11] WANG G, LIU T, SUN X C, et al.Flexible pressure sensor based on PVDF nanofiber[J]. Sensors and Actuators A: Physical, 2018, 280: 319-325.
[12] ZHAN Z, LIN R, TRAN V T, et al.Paper/carbon nanotube-based wearable pressure sensor for physiological signal acquisition and soft robotic skin[J]. ACS Applied Materials & Interfaces, 2017, 9(43): 37921-37928.
[13] WU R, MA L, HOU C, et al.Silk composite electronic textile sensor for high space precision 2d combo temperature-pressure sensing[J]. Small, 2019, 15(31): 1901558.
[14] HUANG Y, FAN X, CHEN S C, et al.Emerging technologies of flexible pressure sensors: materials, modeling, devices, and manufacturing[J]. Advanced Functional Materials, 2019, 29(12): 1808509.
[15] PAN C, DONG L, ZHU G, et al.High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array[J]. Nature Photonics, 2013, 7(9): 752-758.
[16] WAN Y, WANG Y, GUO C F.Recent progresses on flexible tactile sensors[J]. Materials Today Physics, 2017, 1: 61-73.
[17] CAYKARA T, SANDE M G, AZOIA N, et al.Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces[J]. Medical Microbiology and Immunology, 2020, 209(3): 363-372.
[18] YANG C, SUO Z.Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142.
[19] YOU I, KONG M, JEONG U.Block copolymer elastomers for stretchable electronics[J]. Accounts of Chemical Research, 2019, 52(1): 63-72.
[20] WANG S, XU J, WANG W, et al.Skin electronics from scalable fabrication of an intrinsically stretchable transistor array[J]. Nature, 2018, 555(7694): 83-88.
[21] LI X P, LI Y, LI X, et al.Highly sensitive,reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with MXene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62.
[22] YANG Z, PANG Y, HAN X L, et al.Graphene textile strain sensor with negative resistance variation for human motion detection[J]. ACS Nano, 2018, 12(9): 9134-9141.
[23] JEON Y P, PARK J H, KIM T W.Highly flexible triboelectric nanogenerators fabricated utilizing active layers with a ZnO nanostructure on polyethylene naphthalate substrates[J]. Applied Surface Science, 2019, 466: 210-214.
[24] DICKEY M D.Stretchable and soft electronics using liquid metals[J]. Advanced Materials, 2017, 29(27): 1606425.
[25] GUISEPPI-ELIE A.Electroconductive hydrogels: synthesis, characterization and biomedical applications[J]. Biomaterials, 2010, 31(10): 2701-2716.
[26] WANG X, ZHANG Y, ZHANG X, et al.A highly stretchable transparent self-powered triboelectric tactile sensor with metallized nanofibers for wearable electronics[J]. Advanced Materials, 2018, 30(12): 1706738.
[27] YEO W H, KIM Y S, LEE J, et al.Multifunctional epidermal electronics printed directly onto the skin[J]. Advanced Materials, 2013, 25(20): 2773-2778.
[28] KIM H J, SIM K, THUKRAL A, et al.Rubbery electronics and sensors from intrinsically stretchable elastomeric composites of semiconductors and conductors[J]. Science Advances, 2017, 3(9): 1701114.
[29] 崔淑媛, 刘军, 吴伟. 金属纳米颗粒导电墨水的制备及其在印刷电子方面的应用[J]. 化学进展, 2015, 27: 1509-1522.
[30] WU Z, YANG S, WU W.Shape control of inorganic nanoparticles from solution[J]. Nanoscale, 2016, 8(3): 1237-1259.
[31] YAMAN M, KHUDIYEV T, OZGUR E, et al.Arrays of indefinitely long uniform nanowires and nanotubes[J]. Nature Materials, 2011, 10(9): 494-501.
[32] LI H, DING G, YANG Z.A high sensitive flexible pressure sensor designed by silver nanowires embedded in polyimide(AgNW-PI)[J]. Micromachines(Basel), 2019, 10(3): 206.
[33] SUMIO L J, TOSHINARI I.Single-shell carbon nanoutubes of 1-nm diameter[J]. Nature, 1993, 363: 603-605.
[34] SAJID M I, JAMSHAID U, JAMSHAID T, et al.Carbon nanotubes from synthesis to in vivo biomedical applications[J]. International Journal of Pharmaceutics, 2016, 501(1/2): 278-299.
[35] JIANG Z, NAYEEM M O G, FUKUDA K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement[J]. Advanced Materials, 2019, 31(37): 1903446.
[36] ALLEN J M, TUNG V C, KANER R B.Honeycomb carbon: a review of graphene[J]. Chemical Reviews, 2010, 110(1): 132-145.
[37] NOVOSELOV K S, FAL'KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[38] ZHU Y, MURALI S, CAI W, et al.Graphene and graphene oxide: synthesis, properties,and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924.
[39] BLAKE P, HILL E W, CASTRO NETO A H, et al. Making graphene visible[J]. Applied Physics Letters, 2007, 91(6): 63124.
[40] DEOKAR G, AVILA J, RAZADO-COLAMBO I, et al.Towards high quality CVD graphene growth and transfer[J]. Carbon, 2015, 89: 82-92.
[41] CHEN W, YAN L, BANGAL P R.Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon, 2010, 48(4): 1146-1152.
[42] WANG L, WU B, JIANG L, et al.Growth and etching of monolayer hexagonal boron nitride[J]. Advanced Materials, 2015, 27(33): 4858-4864.
[43] KURAPATI R, KOSTARELOS K, PRATO M, et al.Biomedical uses for 2d materials beyond graphene: current advances and challenges ahead[J]. Advanced Materials, 2016, 29(4): 6052-6074.
[44] LUKATSKAYA M R, MASHTALIR O, REN C E, et al.Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341(6153): 1502-1505.
[45] ANASORI B, LUKATSKAYA M R, GOGOTSI Y.2D metal carbides and nitrides(MXenes) for energy storage[J]. Nature Reviews Materials, 2017, 2(2): 16098.
[46] SINHA A, DHANJAI, ZHAO H, et al.MXene: an emerging material for sensing and biosensing[J]. Trends in Analytical Chemistry, 2018, 105: 424-435.
[47] NAGUIB M, MOCHALIN V N, BARSOUM M W, et al.25th anniversary article: MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26(7): 992-1005.
[48] 陈冠荣. 化工百科全书: 第9卷[M]. 北京: 化学工业出版社, 1996.
[49] SHUAI X, ZHU P, ZENG W, et al.Highly sensitive flexible pressure sensor based on silver nanowires-embedded polydimethylsiloxane electrode with microarray structure[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26314-26324.
[50] ZHANG Y, HU Y, ZHU P, et al.Flexible and highly sensitive pressure sensor based on microdome-patterned PDMS forming with assistance of colloid self-assembly and replica technique for wearable electronics[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 35968-35976.
[51] CHOONG C L, SHIM M B, LEE B S, et al.Highly stretchable resistive pressure sensors using a conductive elastomeric composite on a micropyramid array[J]. Advanced Materials, 2014, 26(21): 3451-3458.
[52] LI H, WU K, XU Z, et al.Ultrahigh-sensitivity piezoresistive pressure sensors for detection of tiny pressure[J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20826-20834.
[53] LUO Z, CHEN J, ZHU Z, et al.High-resolution and high-sensitivity flexible capacitive pressure sensors enhanced by a transferable electrode array and a micropillar-PVDF film[J]. ACS Applied Materials & Interfaces, 2021, 13(6): 7635-7649.
[54] HU H, WANG D, TIAN H M, et al.Bioinspired hierarchical structures for contact-sensible adhesives[J]. Advanced Functional Materials, 2022, 32(8): 2109076.
[55] CHENG L, QIAN W, WEI L, et al.A highly sensitive piezoresistive sensor with interlocked graphene microarrays for meticulous monitoring of human motions[J]. Journal of Materials Chemistry C, 2020, 8(33): 11525-11531.
[56] PANG C, LEE G Y, KIM T I, et al.A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres[J]. Nature Materials, 2012, 11(9): 795-801.
[57] FAN F R, LIN L, ZHU G, et al.Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Letters, 2012, 12(6): 3109-3114.
[58] ZHU B, LING Y, YAP L W, et al.Hierarchically structured vertical gold nanowire array-based wearable pressure sensors for wireless health monitoring[J]. ACS Applied Materials & Interfaces, 2019, 11(32): 29014-29021.
[59] CHENG W, WANG J, MA Z, et al.Flexible pressure sensor with high sensitivity and low hysteresis based on a hierarchically microstructured electrode[J]. IEEE Electron Device Letters, 2018, 39(2): 288-291.
[60] CHO Y, KIM G, CHO Y, et al.Orthogonal control of stability and tunable dry adhesion by tailoring the shape of tapered nanopillar arrays[J]. Advanced Materials, 2015, 27(47): 7788-7793.
[61] CHO Y, MINSKY H K, JIANG Y, et al.Shear adhesion of tapered nanopillar arrays[J]. ACS Applied Materials & Interfaces, 2018, 10(13): 11391-11397.
[62] NIU H, GAO S, YUE W, et al.Highly morphology- controllable and highly sensitive capacitive tactile sensor based on epidermis-dermis-inspired interlocked asymmetric-nanocone arrays for detection of tiny pressure[J]. Small, 2020, 16(4): 1904774.
[63] GUO Y, GAO S, YUE W, et al.Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J]. ACS Applied Materials & Interfaces, 2019, 11(51): 48594-48603.
[64] CHEN W, GUI X, LIANG B, et al.Structural engineering for high sensitivity,ultrathin pressure sensors based on wrinkled graphene and anodic aluminum oxide membrane[J]. ACS Applied Materials & Interfaces, 2017, 9(28): 24111-24117.
[65] WAN Y, QIU Z, HONG Y, et al.A highly sensitive flexible capacitive tactile sensor with sparse and high-aspect-ratio microstructures[J]. Advanced Electronic Materials, 2018, 4(4): 1700586.
[66] WEI Y, CHEN S, LIN Y, et al.Cu-Ag core-shell nanowires for electronic skin with a petal molded microstructure[J]. Journal of Materials Chemistry C, 2015, 3(37): 9594-9602.
[67] QIU Z, WAN Y, ZHOU W, et al.Ionic skin with biomimetic dielectric layer templated from calathea zebrine leaf[J]. Advanced Functional Materials, 2018, 28(37): 1802343.
[68] SHI J, WANG L, DAI Z, et al.Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range[J]. Small, 2018, 14(27): 1800819.
[69] ZHOU Q, JI B, WEI Y, et al.A bio-inspired cilia array as the dielectric layer for flexible capacitive pressure sensors with high sensitivity and a broad detection range[J]. Journal of Materials Chemistry A, 2019, 7(48): 27334-27346.
[70] JI B, ZHOU Q, HU B, et al.Bio-inspired hybrid dielectric for capacitive and triboelectric tactile sensors with high sensitivity and ultrawide linearity range[J]. Advance Materials, 2021, 33(27): 2100859.
[71] PARK J, KIM J, HONG J, et al.Tailoring force sensitivity and selectivity by microstructure engineering of multidirectional electronic skins[J]. NPG Asia Materials, 2018, 10: 163-176.
[72] ZHANG X, HU Y, GU H, et al.A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(9): 1900367.
[73] HA M, LIM S, PARK J, et al.Bioinspired interlocked and hierarchical design of ZnO nanowire arrays for static and dynamic pressure-sensitive electronic skins[J]. Advanced Functional Materials, 2015, 25(19): 2841-2849.
[74] YANG J, LUO S, ZHOU X, et al.Flexible,tunable,and ultrasensitive capacitive pressure sensor with microconformal graphene electrodes[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 14997-15006.
[75] ZHAO Z, LI Q, DONG Y, et al.A wearable sensor based on gold nanowires/textile and its integrated smart glove for motion monitoring and gesture expression[J]. Energy Technology, 2021, 9(7): 2100166.
[76] MA C, XU D, HUANG Y C, et al.Robust flexible pressure sensors made from conductive micropyramids for manipulation tasks[J]. ACS Nano, 2020, 14(10): 12866-12876.
[77] MANNSFEL S C, TEE B C, STOLTENBERG R M, et al.Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nature Materials, 2010, 9(10): 859-864.
[78] BAE G Y, HAN J T, LEE G, et al.Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity[J]. Advanced Materials, 2018, 30(43): 1803388.
[79] LEE Y, PARK J, CHO S, et al.Flexible ferroelectric sensors with ultrahigh pressure sensitivity and linear response over exceptionally broad pressure range[J]. ACS Nano, 2018, 12(4): 4045-4054.
[80] LEE Y, MYOUNG J, CHO S, et al.Bioinspired gradient conductivity and stiffness for ultrasensitive electronic skins[J]. ACS Nano, 2021, 15(1): 1795-1804.
[81] XIONG Y, SHEN Y, TIAN L, et al.A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436.
[82] KIM H, KIM G, KIM T, et al.Transparent, flexible, conformal capacitive pressure sensors with nanoparticles[J]. Small, 2018, 14(8): 1703432.
[83] PANG Y, ZHANG K, YANG Z, et al.Epidermis microstructure inspired graphene pressure sensor with random distributed spinosum for high sensitivity and large linearity[J]. ACS Nano, 2018, 12(3): 2346-2354.
[84] YU Z, CAI G, TONG P, et al.Saw-toothed microstructure-based flexible pressure sensor as the signal readout for point-of-care immunoassay[J]. ACS Sensors, 2019, 4(9): 2272-2276.
[85] NIE P, WANG R, XU X, et al.High-performance piezoresistive electronic skin with bionic hierarchical microstructure and microcracks[J]. ACS Applied Materials & Interfaces, 2017, 9(17): 14911-14919.
[86] LI T, LUO H, QIN L, et al.Flexible capacitive tactile sensor based on micropatterned dielectric layer[J]. Small, 2016, 12(36): 5042-5048.
[87] YANG J C, MUN J, KWON S Y, et al.Electronic skin: recent progress and future prospects for skin-attachable devices for health monitoring, robotics,and prosthetics[J]. Advanced Materials, 2019, 31(48): 1904765.
[1] 秦丽丽, 董茂进, 冯煜东, 韩仙虎, 蔡宇宏, 王毅, 李小金, 马凤英. 超高水氧阻隔膜研究进展*[J]. 真空, 2023, 60(1): 23-29.
[2] 李建鹏, 张驰, 李建昌. 柔性电子器件疲劳特性的研究进展*[J]. 真空, 2021, 58(5): 11-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!