欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2021, Vol. 58 ›› Issue (5): 11-15.doi: 10.13385/j.cnki.vacuum.2021.05.02

• 真空应用 • 上一篇    下一篇

柔性电子器件疲劳特性的研究进展*

李建鹏, 张驰, 李建昌   

  1. 东北大学机械工程与自动化学院真空流体工程研究中心,辽宁 沈阳110819
  • 收稿日期:2020-07-31 出版日期:2021-09-25 发布日期:2021-09-23
  • 通讯作者: 李建昌,教授,博士生导师。
  • 作者简介:李建鹏(1995-),男,甘肃省敦煌市人,硕士生。
  • 基金资助:
    *国家自然科学基金(51773030)

Latest Studies on Fatigue Failure of Flexible Electronic Devices

LI Jian-peng, ZHANG Chi, LI Jian-chang   

  1. Vacuum and Fluid Engineering Research Center, School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China
  • Received:2020-07-31 Online:2021-09-25 Published:2021-09-23

摘要: 柔性电子器件因其柔韧性好、集成度高、可设计性强和在可穿戴方面的潜在应用,成为近年来微电子的研究热点之一。目前,研究重点进展到器件在疲劳过程中的具体失效情况及在不影响电学性能的同时提高柔性,本文从基底材料类型、器件电学性能影响因素和疲劳损伤等方面进行综述。首先,归纳了不同基底材料与器件类型;其次,对比了膜/基结构器件的电学性能与界面裂纹监测;重点讨论了拉伸、弯折对薄膜失效过程的影响及微裂纹萌生、扩展和饱和阶段的主要特点。结果表明:裂纹失效形式有张开型、滑开型与撕开型三类;加载速率使脆韧性断裂相互转换并分别对应发生穿晶与沿晶裂纹;基底刚度与裂纹颈缩呈正相关。进一步分析发现疲劳损伤大小与机械形变位错有关,结合模型验证了拉伸与弯折均符合此结论。未来应致力于提高材料的膜基匹配与耐拉弯性,完善原位观测并扩展直接观测器件疲劳失效机理的手段,对裂纹萌生进行可调控,提高理论模型精度并与疲劳实验更好结合,以期为开发超柔抗疲劳电子器件提供基础。

关键词: 柔性电子, 膜-基界面, 疲劳损伤行为, 断裂模型

Abstract: Recently, flexible electronics have attracted intensive interest owing to their potential applications in wearable devices with good flexibility, high integration, and high design ability. The research is developing on to the fatigue damage process and how to improve flexibility while keeping the excellent electrical performances now. In this article, the materials, electrical performance and fatigue failure of flexible electronics are systematically reviewed. First, the material properties and device characteristics are summarized. The charge transport and interfacial cracks of the devices are then compared and analyzed in detail. Particularly, the effects of tensile bending on the failure process of the film and the initiation, electrical properties, expansion and saturation of microcracks are mainly discussed. Three models of cracks can be mainly classified into open, sliding, and tear types. The loading rate has a critical point of brittle rupture and ductile fracture, which correspond to the crack of transgranular and intergranular, respectively. The structure stiffness positively correlating with crack necking is well understood. It is found that the fatigue damage is related to mechanical distortion, and the models verify that the tensile and bending can be well explained with this results. In the future, improving the matching between function layer and substrate, seeking new functional materials, expanding new monitoring method in fatigue failure, and developing noval integration technology of flexible devices will be the key directions in this filed. The studies on mathematical modeling and fatigue experiment need to be combined together, in order to prove guidance for the ultra-flexible and anti-fatigue electronic devices.

Key words: flexible electronics, active-layer/substrate interface, fatigue damage, fracture model

中图分类号: 

  • TB79
[1] GUSTAFSSON G, CAO Y, KLAVETTER F, et al.Flexible light-emitting diodes made from soluble conducting polymers[J]. Natrue, 1992, 357(6378): 477-479.
[2] BOWEN N, BRITTAIN S, EVANS A G, et al.Spontaneous formation of ordered structures in thin films of materials supported on an elastomeric polymer[J]. Nature, 1998, 393(6681): 146-149.
[3] CRONE B, DODABALAPUR A, LIN Y Y, et al.Large-scale complementary integrated circuits based on organic transistors[J]. Nature, 2000, 403(6769): 521-523.
[4] GARNIER F, YASSAR A, SRIVASLTAVA P, et al.All-polymer field-effect transistor realized by printing techniques[J]. Science, 1994, 265(5179): 1684-1686.
[5] 李学通, 仝洪月, 赵越, 等. 柔性电子器件的应用、结构、力学及展望[J]. 力学与实践, 2015, 37(3): 295-301.
[6] LI M, WANG Y, ZHANG Y, et al.Highly flexible and stretchable MWCNT/HEPCP nanocomposites with integrated near-IR, temperatureand stress sensitivity for electronic skin[J]. Journal of Materials Chemistry, 2018, 6(22): 5877-5887.
[7] JASON N N, SHEN W, CHENG W.Copper nanowires as conductive ink for low-cost draw-on electronics[J]. Acs Applied Materials & Interfaces, 2015, 7(30): 167600-16766.
[8] LIANG J, WANG T, QIU P et al. Flexible thermoelectrics: from silver chalcogenides to full-inorganic devices[J]. Energy & Environmental Science, 2019, 12(10): 2983-2990.
[9] LI R, JIAO J B.The effects of temperature and aging on Young's moduli of polymeric based flexible substrates[J]. International Symposium on Microelectronics, 2000, 4399: 68-73.
[10] LIN M, CHEN Q, WANG Z, et al.Flexible polymer device based on Parylene-C with memory and temperature sensing functionalities[J]. Polymers, 2017, 9(8): 310.
[11] TIAN F, ZHANG L, ZHANG J.Space charge and dielectric behavior of epoxy composite with SiO2- Al2O3 nano-micro fillers at varied temperatures[J]. Composites Part B-Engineering, 2017, 114: 93-100.
[12] 范泽莹. 基于硫化相薄膜的柔性可转移阻变存储器工作机理探究[D]. 长春: 东北师范大学, 2018.
[13] WANG Z B, HELANDER M G, QIU J, et al.Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011, 5(12): 753-737.
[14] HU W, NIU X, LI L, et al.Intrinsically stretchable transparent electrodes based on silver-nanowire crosslinked -polyacrylate composites[J]. Nanotechnology, 2012, 23(34): 344002.
[15] YU Z, NIU X, LIU Z, et al.Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes[J]. Advanced Materials, 2011, 23(24): 3989.
[16] LI L, LIANG J, CHOU S Y, et al.A solution processed flexible nanocomposite electrode with efficient light extraction for organic light emitting diodes[J]. Science Reports, 2014, 4: 4307.
[17] HAN T H, LEE Y, CHOI M R, et al.Extremely efficient flexible organic light-emitting diodes with modified graphene anode[J]. Nature Photonics, 2012, 6(2); 105-110.
[18] 贾静. LED照明及显示用柔性远程荧光薄膜的制备与性能研究[D]. 太原: 太原理工大学, 2017.
[19] KIM S, KWON H J, LEE S, et al.Low-power flexible organic light-emitting diode display device[J]. Advanced materials, 2011, 23(31): 3511.
[20] BANDODKAR A J, YOU J M, KIM N H, et al.Soft, stretchable, high power density electronic skin-based biofuel cells for scavenging energy from human sweat[J]. Energy&Environmental Science, 2017, 10(7): 1581-1589.
[21] THORSEN T, WEAVER I, HOLIHAN E, et al.Flexible glucose sensors and fuel cells for bioelectronic implants[C]. International Midwest Symposium on Circuits and Systems, 2017: 619-622.
[22] KANG Y S, PARK T, JANG S, et al.Repetitive bending test of membrane electrode assembly for bendable polymer electrolyte membrane fuel cell[J]. Journal of industrial and engineering chemistry, 2017, 47: 323-328.
[23] NING F D, HE X D, SHEN Y B, et al.Flexible and lightweight fuel cell with high specific power density[J]. Acs Nano, 2017, 11(6): 5982-5991.
[24] TOMINAKA S, NISHIZEKO H, MIZUNO J, et al.Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate[J]. Energy & Environment Science, 2009, 2(10): 1074.
[25] WEINMUELLER C, TAUSTSCHNIG G, HOTZ N, et al.A flexible direct methanol micro-fuel cell based on a metalized, photosensitive polymer film[J]. Journal of Power Sources, 2010, 195(12): 3849-3857.
[26] BRANDAO L, RODRIGUES J, MADEIRA L, et al.Methanol crossover reduction by nafion modification with palladium composite nanoparticles: Application to direct methanol fuel cells[J]. International Journal of Hydrogen Energy, 2010, 32(20): 11561-11567.
[27] XU C, FAGHRI A, LI X, er al. Methanol and water crossover in a passive liquid-feed direct methanol fuel cell[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1769-1777.
[28] GUO Z, FAGHRI A.Vapor feed direct methanol fuel cells with passive thermal-fluids management system[J]. Journal of Power Source, 2007, 162(2): 378-390.
[29] 吴超群, 王威强. 超声喷雾对直接甲醇燃料电池的性能影响研究[J]. 电源技术, 2019, 43(11): 1828-1831.
[30] WU Z L, KUANG X L, LIU L T, et al.A flexible foldable tubular mPDMFC for powering wearable devices[J]. Journal of Microelectromechanical Systems, 2017, 26Z: 1147-1154.
[31] YANG R, QIN Y, DAI L, et al.Power generation with laterally packaged piezoelectric fine wires[J]. Nature Nanatechnology, 2009, 4(1): 34-39.
[32] JEONG C K, PARK K I, RYU J, et al.Large-Area and flexible lead-free nanacomposite generator using alkaline niobate particles and metal nanorod Filler[J]. 2014, 24(18): 2620-2629.
[33] JEONG C K, KIM I, PARK K I, et al. Virus-Directed design of a flexible BaTio3 nanogenerator[J].2013, 7, (12): 11016-11025.
[34] 沙江波, 朱平. I+II型弹塑性断裂的宏观与微观过程[J]. 西安交通大学学报, 1996, 30(12): 87094.
[35] 郑长卿. 韧性断裂细观力学的初始研究及其应用[M]. 西安: 西北工业大学出版社, 1988, 8-19.
[36] 刘国钊. 金属材料脆性断裂原因的实验探讨[J]. 冶金与材料, 2018, 38(6): 62-63.
[37] 孙剑芬. SiCf/Ti复合材料静拉及疲劳力学行为研究[D]. 南京: 南京航空航天大学, 2016.
[38] WANG X S, YAN C K, LI Y, et al.SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading[J]. International Journal of Fracture, 2008, 151(2): 269-279.
[39] CHHETRI S, ADAK N C, SAMANTA P, et al.Investigation of the mechanical and thermal properties of L-glutathione modified graphene/epoxy composites[J]. Composites Part B-Engineering, 2018, 143: 105-112.
[40] BABOUT L, BRECHET Y, MAIRE E, et al.On the competition between particle fracture and particle decohesion in metal martrix composites[J]. Acta materialia, 2004, 52(15): 4517.
[41] KUMAR A, CHOUHAN D K, ALEGAONKAR P S, et al.Graphene-like nanocarbon: An effective nanofiller for improving the mechanical and thermal properties of polymer at low weight fractions.
[42] 马新平, 尚德广, 刘豪, 等. 基于弹塑性有限元分析的电镀铜薄膜缺口疲劳断裂特性研究[J]. 机械强度, 2009, 31(5): 803-807.
[43] 赵林, 杨军虎, 魏文澜, 等. P110H钢的高温拉伸性能及断裂机理[J]. 金属热处理, 2020, 45(4): 204-208.
[44] 朱涛, 黄光杰, 曹玲飞, 等. 晶粒尺寸及取向对AZ31合金板材室温拉伸塑性变形与断裂机制的影响[J]. 中国有色金属学报, 2017, 27(11): 2195-2203.
[45] LI M, WANG Y, ZHANG Y, et al.Highly flexible and stretchable MWCNT/HEPCP nanocomp-osite with integrated near-IR, temperature and stress sensitivity for electronic skin[J]. Journal of Materials Chemistry C, 2018, 6(22): 5877-5887.
[46] ZHANG Y, XU G, WANG Y, et al.Mechanical properties study of W/TiN/Ta system multilayers[J]. Journal of Alloys and Compounds, 2017, 725: 283-290.
[47] YAMAKI E, TAKAJASHI M.Corrosion resistance of Fe-Al-Alloy-Coated ferritic/martensitic steel under bending stress in high temperature lead-bismuth eutectic[J]. Journal of Nuclear Science and Technology, 2011, 48(5): 797-804.
[48] KUMAR A, CHOUHAN D K, ALEGAONKAR P S, et al.Graphene-like nanocarbon: An effective nanofiller for improving the mechanical and thermal properties of polymer at low weight fractions[J].Composites Science and Technology, 2016,127: 79-87.
[49] 张学勇, 李斌, 付朝阳, 等. 复合型导电高分子材料的电阻-温度效应[J]. 材料导报, 2013, 27(S2): 174-178.
[50] SIH G C.Mechanics of fracture initiation and propagation: surface and volume energy density applied as failure criterion[M]. Springer Science & Business Media, 2012.
[51] 张宏波, 陈海坤, 周洁洁, 等. 柔性隔热材料拉伸断裂模式分析[J]. 宇航材料工艺, 2013, 43(5): 49-53.
[52] ZHAO P F, SHANG F L.International Conference on Mechanical Properties of Materials[J]. 2010, 11(10): 794-803.
[53] LETERRIER Y, MEDICO L, DEMARCO F, et al.Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays[J]. Thin Solid Films, 2004, 460(1): 156-166.
[54] ZHANG Y, XU G, WANG Y, et al.Mechanical properties study of W/TiN/Ta system multilayers[J]. Journal of Alloys and Compounds, 2017, 725: 283-290.
[55] MAO X, BAI Y, YU J, et al.Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration[J]. Journal of the American Ceramic Society, 2016, 99(8): 2760-2768.
[56] GHONEIM M T, HUSSAIN M M.Study of harsh environment operation of flexible ferroelectric memory integrated with PZT and silicon fabric[J]. 2015, 107(5): 052904.
[57] LI T C, KUAN T H, LIN J F.Effects of inclination angle during Al-doped ZnO film deposition and number of bending cycles on electrical, piezoelectric, optical, and mechanical properties and fatigue life[J]. Journal of Vacuum Science & Technology, 2016, 34(2): 021501.
[58] TASO S W, CHANG T C, WANG M C.Influence of mechanical bending and temperature on the threshold voltage instability of a-Si: H thin-film transistors under electrical stress[J]. Solid-State Electronics, 2011, 63(1): 55-59.
[59] HAMASHA M M, ALZOUBI K, LU S, et al.Durability study on sputtered indium tin oxide thin film on poly ethylene terephthalate substrate[J]. Thin Solid Films, 2011, 519(18): 6033-6038.
[60] ALZOUBI K, LU S, SAMMAKIA B, et al.Experimental and analytical studies on the high cycle of thin film metal on PET substrate for flexible electronics applications[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2011, 1(1): 43-51.
[61] YI S M, CHOI I S, KIM B J, et al.Reliability issues and solutions in flexible electronics under mechanical fatigue[J]. Electronic Materials Letters, 2018, 14(4): 387-404.
[62] WANG X S, YAN C K, LI Y, et al.SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading[J]. International Journal of Fracture, 2008, 151(2): 269-279.
[63] LI T C, KUAN T H, LIN J F, Effects of inclination angle during Al-doped ZnO film deposition and number of bending cycles on electrical, piezoelectric, optical, and mechanical properties and fatigue life[J]. Journal of Vacuum Science & Technology, 2016, 34(2): 021501.
[64] JEN Y M, CHANG C W.Combined Temperature and Moisture Effect on the Monotonic and Fatigue Strengths of Sandwich Beams with Glass-Polypropylene Faces and Aluminum Foam Cores[J]. Polymers & Polymer Composites, 2018, 26(1): 69-78.
[65] YANG S M, LEE Y S, JANG Y, et al.Electromechanical reliability of a flexible metal-grid transparent electrode prepared by electrohydrodynamic(EHD)jet printing[J]. Microelectronics Reliability, 2016, 65: 151-159.
[66] CHHETRI S, ADAK N C, SAMANTA P, et al.Investigation of the mechanical and thermal properties of L-glutathione modified graphene/epoxy composites[J]. Composites Part B-Engineering, 2018, 143: 105-112.
[67] 薛国宏, 陶伟明. 金属材料延性对其薄膜-柔性基底结构延展性的影响[J]. 力学季刊, 2013, 34(2): 270-274.
[68] PUTTTTICK K E.Ductile fracture in mentals[J]. Philosophical magazine, 1959, 4(44): 964.
[69] BABOUT L, BRECHET Y, MAIRE E, et al.On the competition between particle fracture and particle decohesion in metal martrix composites[J]. Acta Materialia, 2004, 52(15): 4517.
[70] YIN Y, LIU X, HAN Q, et al.Simulation of ductile fracture of structural steels with void growth model and a continuum damage criterion based on it[J]. Theoretical and Applied Fracture Mechanics, 2018, 98: 134-148.
[71] 郭河杰. 基于晶体塑性的铝合金韧性断裂细观力学研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[72] 李宁宁. 高分子纳米复合材料拉伸及压缩的分子动力学模拟[D]. 合肥: 中国科学技术大学, 2014.
[73] DENG H, SHI H, TSURUOKA S.Influence of coating thickness and temperature on mechanical properties of steel deposited with Co-based alloy hardfacing coating[J]. Surface & Coatings Technology, 2010, 204(23): 3927-3934.
[74] JIA H, LIU F, AA Z, et al.Thin-film metallic glasses for substrate fatigue-property improvements[J]. Thin Solid Films, 2014, 561: 2-27.
[75] 马新平, 尚德广, 刘豪, 等. 基于弹塑性有限元分析的电镀铜薄膜缺口疲劳断裂特性研究[J]. 机械强度, 2009, 31(5): 803-807.
[76] 陈茜. 含过渡层软基纳米薄膜在双向拉伸下断裂损伤的实验研究[D]. 天津: 天津大学, 2017.
[77] 郭振山. 纳米尺度金属薄膜在拉伸情况下的稳定性研究[D]. 天津: 天津大学, 2011.
[78] 薛国宏, 陶伟明. 金属延展性对其薄膜-柔性基底结构延展性的影响[J]. 力学季刊, 2013, 34(02): 270-274.
[79] 徐晓斌, 鹿业波, 邓星, 等. 薄膜太阳能电池弯曲疲劳极限检测系统的设计及制造[J]. 嘉兴学院学报, 2018, 30(6): 76-80.
[80] KIM S W, CHOI H J, CHO Y S.Quantitative analysis of bending fracture resistance of nanoscale Cu-buffered ZnO: Al thin films on a polymer substrate[J]. Journal of Alloys and Compounds, 2018, 731: 49-54.
[81] SPINELLI G, LAMBERTI P, TUCCI V, et al.Experimental and theoretical study on piezoresistive properties of a structural resin reinforced with carbon nanotubes for strain sensing and damage monitoring[J]. Composites Part B-Engineering, 2018, 145: 90-99.
[82] WANG X S, YAN C K, LI Y, et al.SEM in-situ investigation on failure of nanometallic film/substrate structures under three-point bending loading[J]. International Journal of Fracture, 2008, 151(2): 269-279.
[83] VAUNOIS J R, POULAIN M, KANOUTE P, et al.Development of bending tests for near shear mode interfacial toughness measurement of EB-PVD thermal barrier coatings[J]. Engineering Fracture Mechanics, 2017, 171: 110-134.
[84] 王建国, 刘宝良, 毕贤顺. 双复合材料结构基底厚度对薄膜裂纹的影响[J]. 黑龙江科技大学学报, 2007, 17(4): 251-253.
[1] 罗军文. 大型金属卷材表面改性连续卷绕镀膜生产线的研制[J]. 真空, 2021, 58(3): 35-38.
[2] 余华俊, 赵习军, 武瑞军. 磁控溅射中旋转阴极的对角效应及其解决途径[J]. 真空, 2021, 58(3): 51-54.
[3] 王资璐, 郝孟一, 李臻熙, 李建军, 侯景岳. 钛合金真空自耗熔炼中的风险识别及预防措施[J]. 真空, 2021, 58(3): 71-76.
[4] 吴彦超, 刘豫瑶, 刘洋, 高晟元, 黄美东. 调制比对电弧离子镀Cr/TiN纳米多层膜力学性能的影响*[J]. 真空, 2021, 58(2): 10-14.
[5] 余清洲, 张俊, 李斌, 高明燚, 刘明昆, 柴晓彤, 干蜀毅. 空调散热器真空除油干燥箱温度场优化[J]. 真空, 2021, 58(1): 82-85.
[6] 柴昊, 贾军伟, 王斌, 李鹏, 崔爽, 冯旭, 李伟, 刘展, 李绍飞, 陈权. 紧凑型微波ECR等离子体源的设计及其特性研究[J]. 真空, 2021, 58(1): 6-9.
[7] 白彪坤, 陈叔平, 陈联, 金树峰, 史庆智, 孟岳. 液氮温度下分子筛的真空吸附特性试验研究[J]. 真空, 2021, 58(1): 45-50.
[8] 贺平. 复合材料筒体泄漏率测试方法研究[J]. 真空, 2020, 57(6): 54-58.
[9] 刘鲁生, 翟朝峰, 杨兵, 宋昊哲, 于岐, 史丹, 袁子尧, 卢志刚, 陈滨, 周美琪, 李海宁, 喻彪, 黄楠, 姜辛. 金刚石薄膜连续制备的热丝化学气相沉积设备研制[J]. 真空, 2020, 57(6): 1-4.
[10] 钟利, 但敏, 沈丽如, 金凡亚, 陈美艳, 刘彤, 邓稚. 霍尔源溅射清洗工艺对离子镀TiN涂层结合性能的影响[J]. 真空, 2020, 57(6): 5-6.
[11] 龙国梁, 王智荣, 胡浩, 张峰. 关于真空炉强冷换向系统的设计探讨*[J]. 真空, 2020, 57(4): 24-27.
[12] 赵腾, 张虎, 刘向, 吴建龙, 张咪, 周榕平. RH精炼炉用机械真空泵系统漏率测试及其智能化检测[J]. 真空, 2020, 57(4): 28-31.
[13] 王沛, 孙志和, 任琪琛, 丁怀况. 一种液氮温区至室温区电缆进出装置的设计[J]. 真空, 2020, 57(4): 66-71.
[14] 杨飞, 李振海, 李建昌. 固体火箭发动机喷管型面的研究进展*[J]. 真空, 2020, 57(1): 40-47.
[15] 吴乐于. 不同高阻隔复合膜在带有沟槽的真空绝热板上的适用性研究[J]. 真空, 2020, 57(1): 62-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!