欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2024, Vol. 61 ›› Issue (1): 78-82.doi: 10.13385/j.cnki.vacuum.2024.01.13

• 真空冶金与热工 • 上一篇    下一篇

一种电子束熔炼用供料、熔铸拖锭装置研制

闫超, 张涛, 贾子朝, 成成, 许文强   

  1. 核工业理化工程研究院,天津 300180
  • 收稿日期:2023-08-14 出版日期:2024-01-25 发布日期:2024-01-24
  • 作者简介:闫超(1991-),男,河北省定州市人,硕士,工程师。

Development of Feeding and Casting Ingot Dragging Device for Electron Beam Melting

YAN Chao, ZHANG Tao, JIA Zi-zhao, CHENG Cheng, XU Wen-qiang   

  1. Research Institute of Physics and Chemistry Engineering of Nuclear Industry, Tianjin 300180, China
  • Received:2023-08-14 Online:2024-01-25 Published:2024-01-24

摘要: 电子束熔炼具有高真空、高能量密度、可精准控制等特点,被广泛应用于难熔金属行业。本文依托核工业理化工程研究院电子枪技术和LT102真空装置,设计研制了一套难熔金属电子束熔炼用供料、熔铸拖锭装置。主要阐述了供料、熔铸拖锭装置的设计技术要求,针对难熔金属进行了熔炼功率计算,并对结构设计功能进行了详细介绍。所研制的供料装置具有多工位、换料功能,拖锭装置具备水冷、下拉、旋转功能。最终装配测试的供料、熔铸拖锭装置性能满足设计要求,整体熔炼实验中设备运行良好。

关键词: 电子束熔炼, 供料装置, 熔铸拖锭装置, 真空熔炼炉, 难熔金属

Abstract: Electron beam melting has the characteristics of high vacuum, high energy density, and precise control, and is widely used in the refractory metals industry. Relying on the electron gun technology and the LT102 device of the Research Institute of Physical and Chemical Engineering of Nuclear Industry, a set of feeding, melting, and casting ingot dragging devices for electron beam melting of refractory metals were designed. The technical requirements for the design of feeding, melting, and casting devices are mainly described, the smelting power for refractory metals is calculated, and the structural design function is introduced in detail. The developed feeding device has multiple work stations and refueling functions. The dragging device has functions of water cooling, pull-down, and rotation. The performance of the feeding and casting dragging device for the final assembly test meets the design requirements, and the equipment runs well in the overall melting experiment.

Key words: electron beam melting, feeding device, casting towing device, vacuum melting furnace, refractory metal

中图分类号:  TF841;TF305

[1] 张文林, 孙涛, 李娟莹. 电子束熔炼及其设备[J]. 冶金设备, 2003(4): 32-34.
[2] 贾国斌, 尹中荣. 电子束技术在难熔金属行业的应用[J]. 稀有金属材料与工程, 2012, 41(增刊2): 113-117.
[3] 谭毅, 石爽. 电子束技术在冶金精炼领域中的研究现状和发展趋势[J]. 材料工程, 2013(8): 92-100.
[4] ELLIS E A I, SPRAYBERRY M A, LEDFORD C, et al. Processing of tungsten through electron beam melting[J]. Journal of Nuclear Materials, 2021, 555: 153041.
[5] MLADENOV G, KOLEVA E, VUTOVA K, et al.Experimental and theoretical studies of electron beam melting and refining[M]//Practical Aspects and Applications of Electron Beam Irradiation. Trivandrum, India: Transword Research Network, 2011: 43-93.
[6] YANG G, YANG P, YANG K, et al.Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105040.
[7] CHOI G S, LIM J W, MUNIRATHNAM N R, et al.Preparation of 5N grade tantalum by electron beam melting[J]. Journal of alloys and compounds, 2009, 469(1/2): 298-303.
[8] XIAO B, JIA W, TANG H, et al.Microstructure and mechanical properties of a newly developed WTaRe refractory alloy by selective electron beam melting[J]. Additive Manufacturing, 2022, 54: 102738.
[9] MURR L E, LI S.Electron-beam additive manufacturing of high-temperature metals[J]. MRS Bulletin, 2016, 41(10): 752-757.
[10] VUTOVA K, VASSILEVA V.Electron-beam melting and reuse of metallic materials[J]. Metal Science and Heat Treatment, 2020, 62: 345-348.
[11] 刘喜海, 徐成海, 郑险峰. 真空冶炼[M]. 北京: 化学工业出版社, 2013.
[12] PATON B E, TRYGUB M P, AKHONIN S V.钛、锆及其合金的电子束熔炼[M]. 樊生文, 王殿儒, 张海峰, 译. 北京: 机械工业出版社, 2014.
[13] 王强. 电子束熔炼提纯冶金级硅工艺研究[D]. 大连: 大连理工大学, 2010.
[14] 张延宾, 孙照富, 尹中荣. 大型太阳能级多晶硅提纯用真空电子束熔炼炉的研制[J]. 真空, 2014, 51(4): 22-25.
[15] 张志平. 电子束熔炼炉连铸系统设计[J]. 真空, 2019, 56(4): 40-43.
[16] 张志平, 张帆, 张黎源, 等. 专用电子束熔炼炉的研制[J]. 天津冶金, 2015(5): 59-62.
[17] 刘业. 电子束熔炼法提纯钨过程中杂质的去除工艺及其机理研究[D]. 长沙: 中南大学, 2013.
[18] 张英明, 周廉, 孙军, 等. 电子束冷床熔炼TC4合金的热平衡分析[J]. 钛工业进展, 2008, 25(6): 34-37.
[19] 张行健. 提高全钽电容器外壳质量的研究[D]. 长沙: 中南大学, 2005.
[20] GEORGIEV G, VASILEVA V, NICOLOV T, et al.Refinement of Ti and Mo using electron beam melting[J]. Vacuum, 1990, 41(7/8/9): 2161-2164.
[21] 张靖周. 高等传热学[M]. 北京:科学出版社, 2009.
[1] 卢少波, 韩永超, 宋艳鹏, 张吉峰. 用于核电元件制造的深井式真空钎焊设备设计[J]. 真空, 2023, 60(3): 72-75.
[2] 马强, 孙足来, 张哲魁, 牟鑫, 李建军, 王秋博. 大功率真空电子束冷床熔炼炉拉锭机构振动仿真分析[J]. 真空, 2021, 58(5): 104-109.
[3] 张志平, 许忠政, 张黎源, 姜正鹤. 专用电子束熔炼炉真空抽气系统设计[J]. 真空, 2021, 58(5): 42-45.
[4] 马晶, 李蛟, 龚小涛, 耿佩, 周超. 电子束熔炼工艺对Ta铸锭表面质量的影响[J]. 真空, 2020, 57(6): 45-47.
[5] 张志平. 电子束熔炼炉连铸系统设计[J]. 真空, 2019, 56(4): 40-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!