欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2020, Vol. 57 ›› Issue (6): 45-47.doi: 10.13385/j.cnki.vacuum.2020.06.10

• 真空冶金 • 上一篇    下一篇

电子束熔炼工艺对Ta铸锭表面质量的影响

马晶1, 李蛟2, 龚小涛1, 耿佩1, 周超1   

  1. 1.西安航空职业技术学院,陕西 西安 710089;
    2.西安诺博尔稀贵金属材料股份有限公司,陕西 西安 710201
  • 收稿日期:2020-03-25 出版日期:2020-11-25 发布日期:2020-11-30
  • 通讯作者: 龚小涛,副教授。
  • 作者简介:马晶(1990-),女,陕西省渭南市人,硕士,讲师。

Effect of Electron Beam Melting Process on Surface Quality of Ta Ingot

MA Jing1, LI Jiao2, GONG Xiao-tao1, GENG Pei1, ZHOU Chao1   

  1. 1.Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China;
    2.Xi'an Noble Rare Metal Materials Co., Ltd., Xi'an 710201, China;
  • Received:2020-03-25 Online:2020-11-25 Published:2020-11-30

摘要: 本文通过固定熔速调整功率的试验,研究了电子束熔炼工艺对Ø100mm钽锭的表面质量影响。试验结果表明:熔炼速度一定时,熔炼功率减小,比电能减少,钽铸锭表面易生成冷隔、夹生等缺陷;熔炼功率过大,熔池温度过高导致过热过熔,对产品的结晶组织不利甚至产生严重的金属瘤疤;当电子束熔炼炉的真空度为2×10-2Pa,熔炼速度30kg/h,熔炼功率为160kW,冷却时间4h时,有利于杂质元素的扩散和挥发,钽铸锭提纯效果好。

关键词: 高纯钽, 电子束熔炼工艺, 熔炼功率, 铸锭表面质量

Abstract: In this paper, the effect of electron beam smelting process on the surface quality of Ø100 Ta ingot is studied through experiment of adjusting the melting power at a fixed melting rate. The experiments results show that, when the melting speed is constant, the melting power is reduced, and the specific electrical energy is reduced, the surface of Ta ingots is prone to defects such as cold insulation and pinching. The melting power is too high, and the temperature of the molten pool is too high, resulting in overheating and overmelting. The microstructure is unfavorable and even produces severe metal tumor scars. When the vacuum of the electron beam melting furnace is 2×10-2Pa, the melting speed is 30 kg/h, the melting power is 160kW, and the cooling time is 4h, which is beneficial to the diffusion and volatilization of impurity elements.

Key words: high pure Ta, electron beam melting process, melting power, surface quality of ingot

中图分类号: 

  • TB742
[1] 闫洪. 真空扫描电子束提纯新技术[J]. 真空, 2000(3): 47-49.
[2] Veronica L, Camero M K, George T, Ramon M M, Benjamin M M, Bineh G N.Additively manufactured tantalum microstructures[J]. Material, 2018(1): 15-24.
[3] Levin Z S, Wang X X, Kaynak M, et al.Strength and ductility of powder consolidated ultra fine-grain tantalum[J]. International Journal of Refractory Metals and Materials, 2018, 80(4): 73-84.
[4] 胡忠武, 李中奎, 张廷杰, 等. 钽及钽合金的新发展和应用[J]. 稀有金属与硬质合金, 2003, 31(3): 34-36.
[5] 郭青蔚, 王肇信. 现代铌钽冶金[M]. 北京: 冶金工业出版社, 2009.
[6] 琚印超, 刘小勇, 王琴, 等. 难熔金属研究进展及在航天领域的应用情况[C]. 中国航天第三专业信息网第三十八届技术交流会暨第二届空天动力联合会议, 2017: 2-9.
[7] Browning P N, Alagic S, Caroll B, et al.Room and ultrahigh temperature mechanical properties of field assisted sintered tantalum alloys[J]. Material Science Engineering. A, 2017, 68(8): 141-151.
[8] 郑金凤, 杨国起, 罗文. 高纯钽溅射靶材制备工艺进展[J]. 湖南属有色金属, 2016, 32(4), 55-80.
[9] 徐潇敏, 刘宁, 刘爱军, 等. 钽及钽合金的制备方法和力学性能研究[J]. 热处理. 2019, 34(1): 6-10.
[10] 聂川, 杨洪帅, 牟鑫. 真空感应熔炼技术的发展及趋势[J]. 真空, 2015, 52(5): 52-57.
[11] 稀有金属手册编辑委员会. 稀有金属手册(Ⅱ)[M]. 北京: 冶金工业出版社, 1995.
[12] 刘多利, 赵永庆, 田广民, 等. 难熔金属材料先进制备技术[J]. 中国材料进展, 2015, 34(2): 164-167.
[13] FAN H, LIU S, DENG C, et al.Quantitative analysis: How annealing temperature influences recrystallization texture and grain shape in tantalum[J]. International Journal of Refractory Metals&Hard Materials, 2018, 72(8): 244-252.
[14] WANG S, CHEN C, JIA Y L, et al.Evolution of deformation microstructures of cold-rolled Ta-2. 5W alloy with coarse grains at low to medicine strains[J]. International Journal of Refractory Metals &Hard Materials, 2016, 54: 104-115.
[15] 谢强, 刘华, 廖强, 等. 熔炼工艺对TA10铸锭中镍元素的影响[J]. 湖南有色金属, 2019, 35(4): 43-45.
[16] 林小辉, 李来平, 李斌, 等. 热等静压在稀有难熔金属产品制备中的应用[J]. 粉末冶金工业, 2017, 27(3): 63-67.
[17] 肖颖, 严宝. 熔炼工艺对锆合金铸锭的影响[J]. 有色金属加工, 2017, 46(1): 15-16.
[1] 伍醒, 蒋爱华, 程勇. 射频功率对DLC薄膜结构和力学性能的影响[J]. 真空, 2019, 56(4): 34-36.
[2] 王槐乾, 姜宏伟. 磁控溅射反应法制备TiN纳米薄膜[J]. 真空, 2019, 56(4): 37-39.
[3] 张庆芳, 易勇, 罗江山. 溅射功率对铒薄膜微观结构的影响*[J]. 真空, 2020, 57(3): 17-20.
[4] 韦贤露, 巩晨阳, 肖剑荣. 射频反应磁控溅射制备MoS2薄膜结构及光学性能*[J]. 真空, 2020, 57(5): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!