欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2025, Vol. 62 ›› Issue (3): 27-32.doi: 10.13385/j.cnki.vacuum.2025.03.05

• 真空冶金与热工 • 上一篇    下一篇

真空熔炼ZTA15钛合金铸件打压泄漏失效分析

刘义辉1, 贾国成1, 王卫超1, 麻毅1, 乔海滨1, 战春鸣2   

  1. 1.中国船舶集团有限公司第七二五研究所,河南 洛阳 471000;
    2.沈阳真空技术研究所有限公司,辽宁 沈阳 110042
  • 收稿日期:2024-12-13 出版日期:2025-05-25 发布日期:2025-05-23
  • 作者简介:刘义辉(1987-),男,河南省洛阳市人,硕士,工程师。

Failure Analysis of Pressure Leakage of Vacuum Melting ZTA15 Titanium Alloy Casting

LIU Yihui1, JIA Guocheng1, WANG Weichao1, MA Yi1, QIAO Haibin1, ZHAN Chunming2   

  1. 1. Luoyang Ship Material Research Institute, Luoyang 471000, China;
    2. Shenyang Vacuum Technology Institute Co., Ltd., Shenyang 110042, China
  • Received:2024-12-13 Online:2025-05-25 Published:2025-05-23

摘要: 某航天领域关键ZTA15钛合金箱体经真空熔炼浇铸及真空热处理工艺处理制备而成。然而,其在组装后的打压测试中频繁出现侧壁泄漏问题。为深入探究失效原因,本研究采用故障树分析法系统性地排查潜在原因,成功精准定位了问题根源。在此基础上,结合理化测试手段对失效机理进行了剖析,验证了定位结果的准确性。通过故障复现实验将研究结果推广至类似情境,为相关行业提供参考。基于上述综合研究,提出了一套针对性的整改方案,有效解决了当前的气密性问题。同时,提炼出切实可行的预防措施,旨在从源头上避免此类钛合金箱体气密性失效的再次发生,为未来同类产品的设计与制造提供了重要参考。

关键词: 真空熔炼, 真空热处理, ZTA15钛合金, 打压泄漏, 补焊, 裂纹

Abstract: The key ZTA15 titanium alloy box as the oil tank shell in the aerospace field was treated by vacuum melting casting and vacuum heat treatment. However, in the pressure test after assembly, there were frequent side wall leakage problems. In order to further explore the cause of failure, this study adoptod fault tree analysis method to systematically investigate the potential causes and successfully determine the root cause of the problem. On this basis, combined with physical and chemical testing, the failure mechanism was analyzed, and the accuracy of the positioning results was verified. In addition, through the fault recurrence experiment, the experimental results are extended to similar situations to provide reference for related industries. Based on the above comprehensive research, this study puts forward a set of targeted rectification plans to effectively solve the current air tightness problem. At the same time, practical preventive measures are extracted to avoid the reoccurrence of such titanium alloy box air tightness failure from the source, which provides important reference and inspiration for the design and manufacture of similar products in the future.

Key words: vacuum melting, vacuum heat treatment, ZTA15 titanium alloy, suppress leakage, weld, crack

中图分类号:  TG146.21

[1] 付艳艳,宋月清,惠松晓,等. 航空用钛合金的研究与应用进展[J].稀有金属. 2006,30(6):850-856.
[2] 张文毓. 国外钛合金的研究与发展[J]. 世界有色金属,2009(7):64-66.
[3] 谢华生,刘时兵,苏贵桥,等. 我国钛合金精铸件铸造技术的发展及应用[J].特种铸造及有色合金, 2008(S1):462-464.
[4] 闫平,王利,赵军,等. 高强度铸造钛合金的应用及发展[J]. 铸造,2007,56(5) : 451-454.
[5] SEN I, TAMIRISAKANDALA S, MIRACLE D B, et al.Micro-structural effects on the mechanical behavior of B-modified Ti-6Al-4V alloys[J]. Acta Materialia, 2007, 55(15):4983-4993.
[6] 肖树龙,陈玉勇,朱洪艳,等. 大型复杂薄壁钛合金铸件熔模精密铸造研究现状及发展[J]. 稀有金属材料与工程, 2006, 35(5):678-681.
[7] 鲍芳芳,高威,冯新,等. 基于专利数据的钛合金精密铸造技术研究概况[J]. 特种铸造及有色合金, 2020, 40(12): 1370-1376.
[8] 曹春晓. 航空用钛合金的发展概况[J]. 航空科学技术,2005(4):3-6.
[9] 谢成木. 钛及钛合金铸造[M]. 北京:机械工业出版社, 2005.
[10] 张钊骞,孙春贵,罗晋,等. 钛合金铸件壳体裂纹缺陷检测和分析[J]. 铸造, 2022, 71(12):1592-1595.
[11] 孙冰,麻毅,乔海滨,等. ZTA15钛合金精铸件漏油失效原因分析[J]. 铸造工程, 2023(3):17-20.
[12] 冉兴,吕志刚,曹建,等. 大型复杂钛合金铸件熔模精密铸造技术[J]. 铸造, 2021, 70(2):137-146.
[13] 郄喜望,南海,赵文正,等. 大型复杂钛合金铸件组织分布规律研究[J]. 特种铸造及有色合金, 2020,40(8):828-831.
[14] 李广东,石岳良. 铸造钛合金补焊技术研究进展[J]. 精密成形工程, 2018, 10(3): 105-109.
[15] 米国发,孔留安,尹冬松,等. 氮对钛合金铸态组织和性能的影响[J].铸造技术, 2005, 26(2): 106-108.
[16] 张英明,周廉,孙军. 钛合金真空自耗电弧熔炼技术发展[J]. 中国材料进展, 2008, 27(5):9-14.
[17] 霍国敬, 战春鸣, 梁园华,等. 浅析钛合金在海洋工程中的应用[J]. 真空, 2025, 62(1):78-85.
[18] MELGAARD D K, WILLIAMSON R L, BEAMAN J J.Controlling remelting process for super alloys and aerospace Ti alloys[J]. JOM, 1998, 50(3):13-17.
[19] GHAZAL G, JARDY A, CHAPELLE P, et al.On the dissolution of nitrided titanium defects during vacuum arc remelting of Ti alloys[J].Metallurgical & Materials Transactions B, 2010,41:646-659.
[20] SIDOROV V V,YAKIMOVICH V P,ALEKSEEV V A.Refining complexly alloyed molten nickel from sulfur impurity to Less than 1 ppm during vacuum melting[J].Metallurgist,2020,64:61-66.
[21] 张美娟,郄喜望,南海,等. 含细长孔ZTC4/TA2钛合金铸件界面熔合效果研究[J].精密成形工程, 2018, 10(3):5-11.
[22] CUI J J, LI B K, LIU Z Q, et al.Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots[J]. Metals, 2021,11(12):2046.
[23] 陶春虎. 紧固件的失效分析及其预防[M].北京:航空工业出版社, 2013.
[24] 全国紧固件标准化技术委员会. 紧固件机械性能螺栓、螺钉和螺柱: GB/T 3098.1-2010 [S]. 北京:中国标准出版社,2010.
[25] CASTILLO-OYAGÜE R, LYNCH C D, TURRIÓN A S, et al. Misfit and microleakage of implant-supported crown copings obtained by laser sintering and casting techniques, luted with glass-ionomer, resin cements and acrylic/urethane-based agents[J].Journal of Dentistry, 2013, 41(1):90-96.
[26] KEBEDE A W, PATOWARI P K, SAHOO C K.Machining efficiency and geometrical accuracy on micro-EDM drilling of titanium alloy[J].Materials and Manufacturing Processes, 2024,39(10):1380-1395.
[27] FILIP R, KUBIAK K, ZIAJA W, et al.The effect of mierostruc-ture on the mechanical properties of two-phase titanium alloys[J]. Journal of Materials Processing Technology. 2003, 133(1/2):84-89.
[1] 霍国敬, 战春鸣, 梁园华, 凌爱军. 浅析钛合金在海洋工程中的应用[J]. 真空, 2025, 62(1): 78-85.
[2] 徐萍. 真空熔炼在高纯度金属材料制备中的关键技术与应用[J]. 真空, 2024, 61(6): 67-72.
[3] 闫超, 张涛, 贾子朝, 成成, 许文强. 一种电子束熔炼用供料、熔铸拖锭装置研制[J]. 真空, 2024, 61(1): 78-82.
[4] 万旭杰, 张华霞, 张凤祥, 高鸿儒, 马宝弘, 赵新颖, 刘坤. 高温合金真空熔炼浇铸过程对耐火材料表面冲蚀的研究[J]. 真空, 2023, 60(5): 98-101.
[5] 翟艳坤, 白雪卫, 张凤宇, 徐铭泽, 苑仁月, 陈俊寅, 黄海波. 高能束熔覆涂层质量缺陷形成机理及控制方法研究现状*[J]. 真空, 2022, 59(6): 78-86.
[6] 王桂鹏, 黄豫兴, 曲绍芬, 高光伟, 谢元华, 刘坤, 巴德纯. 真空热处理炉风机叶轮叶片进出口角变化对冷却效率的影响研究*[J]. 真空, 2022, 59(5): 63-68.
[7] 马强, 孙足来, 张哲魁, 牟鑫, 李建军, 王秋博. 大功率真空电子束冷床熔炼炉拉锭机构振动仿真分析[J]. 真空, 2021, 58(5): 104-109.
[8] 杨光, 刘欢, 王丁丁, 罗立平, 吕绪明, 祁阳. 微米级裂纹对水冷无氧铜坩埚的影响*[J]. 真空, 2021, 58(4): 81-86.
[9] 鄂东梅. 真空技术在航空航天中的应用[J]. 真空, 2021, 58(3): 77-81.
[10] 王智荣, 马强, 龙国梁, 李雪峰, 刘成. 多室隧道连续式真空烧结炉及热处理炉的研制与应用*[J]. 真空, 2019, 56(5): 6-11.
[11] 王博, 张忠和, 王飞宇, 王帅, 闫帅, 崔天龙, 张忠信. 马氏体沉淀硬化不锈钢真空热处理畸变的研究[J]. 真空, 2019, 56(4): 49-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!