欢迎访问沈阳真空杂志社 Email Alert    RSS服务

真空 ›› 2023, Vol. 60 ›› Issue (2): 63-67.doi: 10.13385/j.cnki.vacuum.2023.02.11

• 测量与控制 • 上一篇    下一篇

微秒脉冲下两电极开关的低真空击穿特性研究*

夏际炉1,2, 张自成1,2, 刘世飞1,2, 李典耕1,2   

  1. 1.国防科技大学前沿交叉学科学院,湖南 长沙 410073;
    2.脉冲功率激光技术国家重点实验室,湖南 长沙 410073
  • 收稿日期:2022-06-09 出版日期:2023-03-25 发布日期:2023-03-27
  • 通讯作者: 张自成,研究员。
  • 作者简介:夏际炉(1993-),男,江西省景德镇人,硕士。
  • 基金资助:
    *湖南省自然科学基金项目(2017JJ1005)

Study on Low Vacuum Breakdown Characteristics of Microseconds Pulse in Two-electrode Switch

XIA Ji-lu1,2, ZHANG Zi-cheng1,2, LIU Shi-fei1,2, LI Dian-geng1,2   

  1. 1. College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
    2. State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
  • Received:2022-06-09 Online:2023-03-25 Published:2023-03-27

摘要: 针对巴申曲线在低真空范围击穿特性尚无详细研究,且只适用于均匀电场的情况,本文研究了10-3~10 Pa低真空范围微秒脉冲下两电极开关击穿特性,在真空击穿试件内进行不同球电极间隙距离的真空击穿实验,探索并总结了其击穿规律。首先,对不同电极间距下放电腔场强分布进行了仿真,结果显示场分布为稍不均匀场,场强最大值集中在电极球面顶点之间。然后采用光学显微镜观察实验后电极表面状态,分析了击穿场强以及离散度随真空度和电极间隙的变化规律。结果表明:阴极烧蚀比阳极更为明显,小间隙下真空击穿主要为阴极引发;击穿场强随气压不断降低而迅速增大,上升斜率先增后减,击穿场强趋于稳定,该现象与真空击穿规律相符合;真空击穿场强离散度也随真空度变大,证明真空击穿的随机性和分散性较大。

关键词: 微秒脉冲, 真空击穿, 低真空

Abstract: The breakdown characteristics of the Paschen curve in the low vacuum range are not revealed in detail, and it is only applicable to the case of uniform electric field. This paper explores the breakdown characteristics of 10-3-10 Pa in microsecond pulse of two-electrode switch. The vacuum breakdown test was carried out with spherical electrode at different electrode spacing to explore and summarize its breakdown rules. Firstly, the field intensity distribution of the discharge cavity with different electrode spacing is simulated. The simulation results show that the field distribution is slightly uneven, and the maximum field intensity is concentrated between the spherical vertices of the electrodes. Then, the state of the electrode surface after the experiment is observed by optical microscope, and the variation of the breakdown field strength and dispersion with the vacuum degree and electrode gap is analyzed. The results show that the ablation of cathode is more obvious than that of anode, and the vacuum breakdown is mainly caused by cathode in small gap. The breakdown field strength increases rapidly with the decrease of pressure, the rising slope increases first and then decreases, and the breakdown field strength tends to be stable, which accords with the rule of vacuum breakdown. The dispersion of vacuum breakdown also increases with vacuum degree, which verifies the randomness and dispersion of vacuum breakdown.

Key words: microsecond pulse, vacuum breakdown, low vacuum

中图分类号: 

  • TL503
[1] MARTIN J C.The pre-history of pulsed power[C]//95 IEE Colloquium on Pulsed Power. London: IET, 1995.
[2] CHENG Z, WANG R, PING Y, et al.Atmospheric-pressure pulsed discharges and plasmas: mechanism, characteristics and applications[J]. High Voltage, 2018, 3(1): 14-20.
[3] CHEN R, QIAN B, YANG J, et al.A durable microsecond solid-state pulsed power system[J]. Review of Scientific Instruments, 2021, 92(5): 054707.
[4] 刘锡山. 高功率脉冲技术[M]. 北京: 国防工业出版社, 2005: 170-400.
[5] PASCHEN F. On sparking over in air, hydrogen, carbon dioxide under the potentials corresponding to various pressures[J]. Wiedemann Annalen der Physik und Chemie, 1889, 37: 69-96.
[6] TOWNSED J S, Electricity in gases[M]. Oxford, UK: Clarendon Press, 1915: 365.
[7] RAIZER Y P, ALLEN J E.Gas discharge physics[M]. Berlin: Springer, 1991.
[8] ZHENG J X, SONG Y T, HUANG X Y, et al.Experimental study on Paschen tests of ITER current lead insulation[J]. Plasma Science and Technology, 2013, 15(2): 152-156.
[9] HATCH A J, WILLIAMS H B.The secondary electron resonance mechanism of low-pressure high-frequency gas breakdown[J]. Journal of Applied Physics, 1954, 25(4): 417-423.
[10] 翁明, 王瑞, 崔万照. 高频气体击穿与真空击穿之间的联系[J]. 空间电子技术, 2014, 11(1): 6-10.
[11] 胡汉泉, 李昌全, 陈丕瑾, 等. 真空击穿(一)[J]. 真空科学与技术, 1983(2): 153-164.
[12] 胡汉泉, 李昌全, 陈丕瑾, 等. 真空击穿(二)[J]. 真空科学与技术, 1983(6): 471-482.
[13] 胡祥刚, 宋玮, 向导, 等. 金属表面形貌对真空击穿阈值的影响[J]. 太赫兹科学与电子信息学报, 2019, 17(1): 174-178.
[14] 胡祥刚, 苏建仓, 张瑜, 等. 金属表面镀高分子膜对真空击穿阈值的影响[J]. 强激光与粒子束, 2020, 32(7): 119-123.
[15] 米夏兹G A. 大功率毫秒微波的产生[M]. 北京: 原子能出版社, 1982: 42-64.
[16] 黄子平, 何佳龙, 陈思富, 等. 高压多脉冲真空间隙击穿实验研究[J]. 强激光与粒子束, 2008, 20(11): 1903-1907.
[17] HACKAM R, ALTCHEH L.AC(50Hz) and DC electrical breakdown of vacuum gaps and with variation of air pressure in the range 10-9-10-2 Torr using OFHC copper, nickel, aluminum, and niobium parallel planar electrodes[J]. Journal of Applied Physics, 1975, 46(2): 627-636.
[18] KLAS M, ERMÁK P, BORKHARI A F, et al. Vacuum breakdown in microgaps between stainless-steel electrodes powered by direct-current and pulsed electric field[J]. Vacuum, 2021, 191: 110327.
[19] 李砚平, 马伊民. 电子二次倍增饱和现象和抑制措施[J]. 空间电子技术, 2008, 5(4): 36-40.
[20] 张自成. 紧凑重频Tesla变压器型吉瓦脉冲发生器[D]. 长沙: 国防科学技术大学, 2008.
[21] NGAI S, ZHANG P, XIE H, et al.Influence of Ti3SiC2 content on erosion behavior of Cu-Ti3SiC2 cathode under vacuum arc[J]. Ceramics International, 2021, 47(18): 25973-2598.
[1] 吕乾乾, 孙振川, 周建军, 杨振兴, 陈瑞祥, 游慧杰. 低真空管道系统性能室内实验研究*[J]. 真空, 2021, 58(3): 7-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李得天, 成永军, 张虎忠, 孙雯君, 王永军, 孙 健, 李 刚, 裴晓强. 碳纳米管场发射阴极制备及其应用研究[J]. 真空, 2018, 55(5): 1 -9 .
[2] 周彬彬, 张 建, 何剑锋, 董长昆. 基于 CVD 直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5): 10 -14 .
[3] 柴晓彤, 汪 亮, 王永庆, 刘明昆, 刘星洲, 干蜀毅. 基于 STM32F103 单片机的单泵运行参数数据采集系统[J]. 真空, 2018, 55(5): 15 -18 .
[4] 李民久, 熊 涛, 姜亚南, 贺岩斌, 陈庆川. 基于双管正激式变换器的金属表面去毛刺 20kV 高压脉冲电源[J]. 真空, 2018, 55(5): 19 -24 .
[5] 刘燕文, 孟宪展, 田 宏, 李 芬, 石文奇, 朱 虹, 谷 兵, 王小霞 . 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25 -28 .
[6] 徐法俭, 王海雷, 赵彩霞, 黄志婷. 化学气体真空 - 压缩回收系统在环境工程中应用研究[J]. 真空, 2018, 55(5): 29 -33 .
[7] 谢元华, 韩 进, 张志军, 徐成海. 真空输送的现状与发展趋势探讨(五)[J]. 真空, 2018, 55(5): 34 -37 .
[8] 孙立志, 闫荣鑫, 李天野, 贾瑞金, 李 征, 孙立臣, 王 勇, 王 健, 张 强. 放样氙气在大型收集室内分布规律研究[J]. 真空, 2018, 55(5): 38 -41 .
[9] 黄 思 , 王学谦 , 莫宇石 , 张展发 , 应 冰 . 液环压缩机性能相似定律的实验研究[J]. 真空, 2018, 55(5): 42 -45 .
[10] 常振东, 牟仁德, 何利民, 黄光宏, 李建平. EB-PVD 制备热障涂层的反射光谱特性研究[J]. 真空, 2018, 55(5): 46 -50 .