欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (2): 39-44.doi: 10.13385/j.cnki.vacuum.2023.02.07

• Vacuum Acquisition System • Previous Articles     Next Articles

Development of An Apparatus for Material Outgassing Test Under Thermal Vacuum Condition

ZHOU Jia-yi1,2, WANG Pei1,2, ZHANG Zong-feng2, WANG Dong1, REN Qi-chen1, HU Ju-li1,2, HAN Rui1,2, WANG Yun-hu1, LU Mao-lei1,2, SUN Zhi-he1,2, DING Huai-kuang1,2   

  1. 1. Anhui Key Laboratory of Low Temperature Technology, Anhui Vacree Technologies Co., Ltd., Hefei 230088, China;
    2. The 16th Research Institute of China Electronics Technology Group Corporation, Hefei 230088, China
  • Received:2021-08-26 Online:2023-03-25 Published:2023-03-27

Abstract: A device for simulating space environment and detecting the outgassing of aerospace materials accurately is developed. This paper mainly introduces the equipment composition of the thermal vacuum degassing device, the theoretical calculation in development process, the test method of thermal vacuum degassing and the selection of vacuum pump unit. Thermal vacuum outgassing test for an aerospace material was carried out and the TML(total mass loss) and CVCM(collected volatile matter) were measured. Comparing with the existing data, it is found that the errors of TML and CVCM satisfy the credibility requirements in the relevant standards. This device is suitable for the thermal vacuum outgassing test.

Key words: aerospace material, thermal vacuum outgassing, vacuum system, TML, CVCM

CLC Number: 

  • V45
[1] DYER J S, BENSON R C, PHILLIPS T E, et al.Outgassing analysis performed during vacuum bakeout of components painted with chemglaze Z306/9922[C]//Proceedings of SPIE: the International Society for Optical Engineering. San Diego, CA, United States: SPIE, 1992, 1754: 177.
[2] 王鹢, 王先荣. 星用非金属材料出气物成分及污染光学测试[J]. 航天器环境工程, 2005, 22(5): 295-299.
[3] ASTM INTERNATIONAL.Standard test method for total mass loss and collected volatile condensable materials from outgassing in a vacuum environment: ASTM E595-15[S]. West Conshohocken, PA, 2021.
[4] NASA. Outgassing test for non-metallic materials associated with contamination sensitive surface in a thermal vacuum environment: NASA-MSFC-SPEC-1443[S]. Alabama, 2002.
[5] ECSS. Thermal vacuum test for the screening of space material: ECSS-Q-ST-70-02C[S]. Noordwijk ESA Publications Division ESIC, 2008.
[6] 刘洋洋, 李国华, 王军伟, 等. 一种用于超高真空环境下材料释气特性测试装置: CN114544420A[P].2022-05-27.
[7] 孙志和, 章学华, 汪澎, 等. 热真空释气试验装置: CN102818815B[P].2014-06-18.
[8] MA L, WANG K, ZHANG X, et al.Experimental study on polyimide foamfor satellite[J]. Advances in Astronautics Science and Technology, 2022, 5(2): 119-128.
[9] 中国航天标准化研究所. 真空条件下材料挥发性能测试方法: QJ 1558B-2016[S]. 北京: 中国航天标准化研究所, 2016.
[10] 中国电子技术标准化研究院. 电连接器试验方法: GJB 1217A-2009[S]. 北京: 总装备部军标出版发行部, 2009.
[11] 成大先. 机械设计手册: 第1卷[M]. 北京: 化学工业出版社, 2007: 1443-1453.
[12] 何超峰, 郁欢强, 宣伟, 等. 高温超导电缆终端恒温器研制[J]. 低温与超导, 2013, 41(8): 24-27.
[13] 达道安. 真空设计手册[M]. 北京: 国防工业出版社, 2004: 692-695.
[14] 浦广益. ANSYS Workbench基础教程及实例详解[M]. 北京: 中国水利水电出版社, 2013: 95-152.
[15] 滕健, 叶海峰, 汪韩送, 等. 一种热真空试验设备的研制[J]. 低温与超导, 2016, 44(12): 16-20.
[16] 许海虹. RH用机械真空泵抽气过程计算机仿真程序的开发[J]. 真空科学与技术学报, 2019, 39(3): 206-213.
[17] 吴天泽, 熊春晓, 朱文杰, 等. 新型多层绝热材料组合包覆工艺及其绝热性能[J]. 宇航材料工艺, 2019, 49(3): 56-60.
[18] 黄本诚, 马有礼. 航天器空间环境试验技术[M]. 北京: 国防工业出版社, 2002.
[19] 郭萍, 蒋坤. 热真空释气机理与试验标准研究[J]. 中国标准化, 2021(12): 201-205.
[20] 邵蓓蓓. 浅析电子天平使用规定和检测维修的问题[J]. 科学大众: 科技创新, 2020(1): 98.
[1] LIU Shun-ming, SONG Hong, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, SUN Xiao-yang, CHEN Wei-dong, LIU Sheng-jin, OUYANG Hua-fu. Vacuum System for CSNS II Ion Source and LEBT [J]. VACUUM, 2022, 59(4): 22-27.
[2] WANG Peng-cheng, SUN Xiao-yang, JING Han-tao, HUANG Tao, LIU Jia-ming, LIU Shun-ming, TAN Biao. The Vacuum System of Back-n at CSNS [J]. VACUUM, 2022, 59(3): 7-11.
[3] ZHANG Zhi-ping, XU Zhong-zheng, ZHANG Li-yuan, JIANG Zheng-he. Design of Vacuum Pumping System for Electron Beam Melting Furnace [J]. VACUUM, 2021, 58(5): 42-45.
[4] WANG Jun-ru, YU Yao-wei, CAO Bin, ZHUANG Hui-dong, HU Jian-sheng. Design and Research on the Vacuum System of Material Sputtering Experimental Device for the Fusion First Wall Material [J]. VACUUM, 2021, 58(5): 32-36.
[5] TAN Biao, HUANG Tao, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, LIU Shun-ming, SUN Xiao-yang, DONG Hai-yi. The Vacuum System of RCS at CSNS [J]. VACUUM, 2021, 58(3): 1-6.
[6] LIU Shun-ming, OUYANG Hua-fu, HU Zhi-liang, SONG Hong, HUANG Tao, WANG Peng-cheng, LIU Jia-ming, GUAN Yu-hui, TAN Biao, LIU Sheng-jin, XIAO Yong-chuan, CAO Xiu-xia, LU Yong-jia, XUE Kang-jia, WU Xuan, KANG Ming-tao, BNCT Team. Vacuum System for Boron Neutron Capture Therapy(BNCT) [J]. VACUUM, 2020, 57(6): 64-68.
[7] Alessandro Abatecola. A new high-conductance ion pump for particle accelerator [J]. VACUUM, 2019, 56(1): 16-19.
[8] LUO Wei. Application and analysis of energy saving reform of condenser vacuum system [J]. VACUUM, 2018, 55(6): 37-41.
[9] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering [J]. VACUUM, 2018, 55(5): 29-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .