欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (5): 98-101.doi: 10.13385/j.cnki.vacuum.2023.05.16

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Study on the Surface Erosion of Refractory Materials During the Superalloy Vacuum Melting Casting Process

WAN Xu-jie1,2, ZHANG Hua-xia2, ZHANG Feng-xiang2, GAO Hong-ru2, MA Bao-hong3, ZHAO Xin-ying3, LIU Kun1   

  1. 1. School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819, China;
    2. Superalloy Casting Division, Beijing Institute of Aeronautical Materials Co., Ltd Beijing 100095, China;
    3. School of Equipment Engineering, Shenyang Ligong University, Shenyang 110159, China
  • Received:2023-08-26 Online:2023-09-25 Published:2023-09-26

Abstract: In the vacuum melting casting process of superalloys, the intermediate package system is used to transfer the molten alloy into the ingot mold system. The intermediate package system is typically made of refractory materials. In this paper, the formation mechanism of erosive surface of alumina based refractory was studied by observing the change of surface morphology and Cr layer thickness under different erosion times. The results show that under the action of the superalloy liquid erosion, the cross-section of the refractory produces a zonal Cr layer, and its thickness increases first and then decreases with the increase of the erosion time, and finally tends to be stable. When the erosion time is 145min, the refractory and the superalloy liquid reach a dynamic equilibrium state, and the average thickness of Cr layer is stable at about 400μm.

Key words: superalloy, vacuum melting, erosion time, refractory material

CLC Number:  TF132+.12;TF341.7

[1] 晁革新, 赵玉厚. 燃气涡轮发动机涡轮叶片的无余量熔模精铸工艺[J]. 铸造技术, 2004, 25(8): 622-625.
[2] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, (增刊2): 482-486.
[3] 窦学铮, 蒋立武, 宋尽霞, 等. 镍基单晶高温合金力学性能各向异性的研究进展[J]. 材料导报, 2022, 36(24): 154-168.
[4] 陈娇, 罗桦, 贺戬, 等. 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成形工程, 2023, 15(1):156-169.
[5] 张健, 王莉, 王栋, 等. 镍基单晶高温合金的研发进展[J]. 金属学报, 2019, 55(9): 1077-1094.
[6] 张龙飞, 江亮, 周科朝, 等. 航空发动机用单晶高温合金成分设计研究进展[J]. 中国有色金属学报, 2022, 32(3): 630-644.
[7] 袁战伟, 常逢春, 马瑞, 等. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 200-208.
[8] 郭建亭. 高温合金材料学(上): 应用基础理论[M]. 北京: 科学出版社, 2008.
[9] 张华霞, 马国宏, 马秀萍, 等. FGH96高温合金粉末返回料净化技术研究[J]. 铸造技术, 2018, 39(10): 2173-2175.
[10] WANG L N, ZHENG Q, SUN X F, et al.Oxygen and nitrogen effects on MC carbide in K465 nickel-base superalloy[J]. Rare Metal Materials and Engineering, 2009, 38(S3): 13-16.
[11] DANIELE C, THOMAS H, MATTIA M, et al.Importance of trace element control on mechanical and foundry properties of cast superalloys[J]. Metals Technology, 2013, 11(1): 438-445.
[12] 张美杰, 黄奥, 顾华志, 等. 连铸中间包耐火材料的冲蚀特性与控流装置的优化设置[J]. 武汉科技大学学报(自然科学版), 2010, 33(5): 449-452.
[13] CAMPBELL A P, PERICLEOUS K A.Cross modeling of freeze layers and refractory wear in direct smelting processes[C]// 61st Ironmaking Conference Proceedings. Nashville, Tennessee, 2002: 479-490.
[14] JAKOVICS A, MADZHULIS I, FRISHFELDS V, et al.Influence of melt flow and temperature on erosion of refractory and deposit formation in aluminium melting furnaces[J]. Energy Conversion and Management, 2002, 43(3): 345-352.
[15] POIRIER J, QAFSSAOUI F, ILDEFONSE J, et al.Analysis and interpretation of refractory microstructures in studies of corrosion mechanisms by liquid oxides[J]. Journal of the European Ceramic Society, 2007, 28(8): 1557-1568.
[16] FRUHSTORFER J, SCHÖTTLER L, DUDCZIG S, et al. Erosion and corrosion of alumina refractory by ingot casting steels[J]. Journal of the European Ceramic Society, 2016, 36(5): 1299-1306.
[17] 李小超, 丁浩, 刘宝林, 等. SiC-Sialon复相耐火材料高温固体粒子冲蚀磨损行为[J]. 稀有金属材料与工程, 2015, 44(增刊1): 486-489.
[18] 薛威, 蒋明学, 冯烁. 高铝质耐火材料常温耐磨性能研究[J]. 硅酸盐通报, 2016, 35(12): 4161-4165.
[1] ZHANG Feng-xiang, MA Guo-hong, WAN Xu-jie, MA Xiu-ping, WU Ke-han, ZHANG Hua-xia. Cause Analysis on the Surface Porosity in Superalloy Ingots During Vacuum Casting [J]. VACUUM, 2023, 60(4): 80-84.
[2] ZHANG Feng-xiang, ZHANG Peng, LI Yi, MA Xiu-ping, LIU Dong-fang, WAN Xu-jie, ZHANG Hua-xia. Interface Reaction Between a Zr Containing Superalloy and Crucible Refractory Material [J]. VACUUM, 2023, 60(3): 80-85.
[3] LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85.
[4] MA Qiang, SUN Zu-lai, ZHANG Zhe-kui, MU Xin, LI Jian-jun, WANG Qiu-bo. Vibration Simulation Analysis of Ingot Withdrawing Mechanism of Large Power Vacuum Cold Hearth Furnace [J]. VACUUM, 2021, 58(5): 104-109.
[5] SONG Jing-si, WANG Ting, LI Xiu-zhang, CHEN Jiu-qiang, ZHANG Zhe-kui. Study on the Structure Layout of a Large Vacuum Precision Casting Furnace [J]. VACUUM, 2021, 58(2): 31-36.
[6] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[7] WANG Kai, XU Zhen-hua, ZHEN Zhen, DAI Jian-wei, WANG Xin, HE Li-min. Effect of Grit Blasting on the Recrystallization, Elemental Diffusion Behaviors of Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!