欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (3): 80-85.doi: 10.13385/j.cnki.vacuum.2023.03.14

• Vacuum Metallurgy and Thermal Engineering • Previous Articles     Next Articles

Interface Reaction Between a Zr Containing Superalloy and Crucible Refractory Material

ZHANG Feng-xiang1, ZHANG Peng2, LI Yi3, MA Xiu-ping1, LIU Dong-fang1, WAN Xu-jie1, ZHANG Hua-xia1   

  1. 1. Superalloy Casting Division, Beijing Institute of Aeronautical Materials Co., Ltd., Beijing 100095, China;
    2. Air Force of the PLA′s Resident Office in Zhuzhou, Zhuzhou 412002, China;
    3. Purchasing Department, Aecc South Industry Co., Ltd., Zhuzhou 412002, China
  • Received:2023-03-24 Online:2023-05-25 Published:2023-05-30

Abstract: The interface reaction between a Zr containing superalloy and different crucible refractory materials was investigated by dross test, scanning electron microscope(SEM) and energy dispersive spectroscopy(EDS). The results show that the ZrO2 produced by the reaction between Zr in superalloy and oxide ceramic crucible is the main source of dross in alloy ingot. The thermodynamic stability of MgO crucible is lower than that of Al2O3 crucible, and its reaction with Zr is more intense, resulting in more ZrO2 dross. The microstructure of crucible also has an important influence on the interfacial reaction. When the density of the crucible is high and the surface is smooth, the generated ZrO2 is attached to the crucible surface to form a dense ZrO2 layer, which prevents the further reaction between Zr and Al2O3 crucible. When the surface of the crucible is rough, it is difficult to form a dense ZrO2 layer, and the generated ZrO2 enters the alloy melt to form dross. Therefore, the use of Al2O3 crucible with high density, fine structure and good surface quality is conducive to reduce the reaction between superalloy and crucible refractory, and reduce the pollution of alloy ingot.

Key words: superalloy, refractory material, dross, interface reaction, Zr

CLC Number:  TG249.5

[1] 王会阳, 安云岐, 李程宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011(2): 482-486.
[2] 尚根峰. 含稀土、钙元素的镍基单晶高温合金与铸型界面反应研究及氧化行为评价[D]. 赣州: 江西理工大学, 2018.
[3] 郑亮, 肖程波, 张国庆, 等. 高Cr 铸造镍基高温合金K4648与陶瓷型芯的界面反应研究[J].航空材料学报, 2012, 32(3): 10-22.
[4] 姚建省, 唐定中, 刘晓光, 等. DD6 单晶高温合金与陶瓷型壳的界面反应[J]. 航空材料学报, 2015, 35(6): 1-7.
[5] 姚建省, 李鑫, 王丽丽, 等. Al2O3型壳与DD6单晶合金的界面反应[J]. 稀有金属材料与工程, 2018, 47(3):840-845.
[6] 王丽丽, 李嘉荣, 唐定中, 等.SiO2-ZrO2陶瓷型芯与DZ125, DD5和DD6三种铸造高温合金的界面反应[J]. 材料工程, 2016, 44(3): 9-14.
[7] 訾赟. Re和Y元素对高温合金熔体与陶瓷材料界面反应的影响[D]. 合肥: 中国科学技术大学, 2020.
[8] 陈晓燕, 周亦胄, 张朝威, 等. Hf对一种高温合金与陶瓷材料润湿性及界面反应的影响[J].金属学报, 2014, 50(8): 1019-1024.
[9] 姜卫国, 郭万军, 董琳, 等. 氧化铝坩埚与高温合金的界面反应机制[J]. 特种铸造及有色合金,2023,43(3): 308-313.
[10] 张轶波, 郑亮, 许文勇,等. 莫来石基耐火材料夹杂物与粉末冶金高温合金FGH96界面反应[J]. 航空材料学报, 2022, 42(2): 20-28.
[11] ZHAO Y, WANG L, CHEN C, et al.Effect of a MgO-CaO-ZrO2-based refractory on the cleanliness of a K4169 Ni-based superalloy[J]. Ceramics International, 2023, 49(1): 117-125.
[12] WAN B, ZHANG H, GAO M, et al.High-temperature wettability and interactions between Hf-containing NbSi-based alloys and Y2O3 ceramics with various microstructures[J]. Materials & Design, 2018, 138: 103-110.
[13] HORIE T, KONO T, KISHIMOTO Y, et al.The effect of CaO-MgOmixture on desulfurization of molten Ni-base superalloy[J]. Metallurgical and Materials Transactions B, 2021,52:3558.
[14] WAN B, ZHANG H, RAN C, et al.High-temperature wettability and interactions between NbSi-based alloys and Y2O3 ceramics[J]. Ceramics International, 2018, 44(1): 32-39.
[15] 陈晓燕, 肖旅, 余建波, 等. 熔模铸造高温合金与陶瓷材料界面反应研究进展[J]. 特种铸造及有色合金, 2016, 36(8): 844-848.
[16] 吴笑非, 姚建省, 王丽丽, 等. Al2O3型壳与定向凝固合金IC10的界面反应[J]. 材料工程, 2021, 49(7): 141-147.
[17] WANG E H.Metal-mold reactions in CMSX-4 single crystal superalloy castings[D]. Reno: University of Nevada, 2009.
[18] KRITSALIS P, MERLIN V, COUDURIER L, et al.Effect of Cr on interfacialinteraction and wetting mechanisms in Ni alloy/Alumina systems[J]. Acta Metallurgica et Materialia, 1992,40(6): 1167-1175.
[19] 宋庆忠, 潜坤, 舒磊,等. 镍基高温合金K417G与氧化物耐火材料的界面反应[J]. 金属学报, 2022, 58(7): 868-882.
[20] LI Q, ZHANG H, GAO M, et al.High-temperature wetting behavior of molten Ni-based superalloy on Y2O3 ceramics with different surface microstructures[J]. Journal of Materials Processing Technology, 2021, 294:117094.
[21] 中国金属学会高温材料分会. 中国高温合金手册: 下卷[M].北京: 中国标准出版社, 2012.
[1] ZHANG Feng-xiang, MA Guo-hong, WAN Xu-jie, MA Xiu-ping, WU Ke-han, ZHANG Hua-xia. Cause Analysis on the Surface Porosity in Superalloy Ingots During Vacuum Casting [J]. VACUUM, 2023, 60(4): 80-84.
[2] SUN Wen-jun, FENG Xin-ge, SONG Yi, PEI Xiao-qiang, WU Cheng-yao. Study on Surface Modification of Zr/ZrVFe Porous Getter Material [J]. VACUUM, 2022, 59(6): 17-21.
[3] LIU Yang, ZHANG Ya-nan, GAO Sheng-yuan, ZHAO Zhen-yun, ZHENG Ming-hao, HUANG Mei-dong. Research on Mechanical Properties of Zr/ZrN Multilayers by Multi-arc Ion Plating [J]. VACUUM, 2022, 59(5): 28-31.
[4] XIN Xian-feng, LIU Lin-gen, LIN Guo-qiang, DONG Chuang, DING Wan-yu, ZHANG Shuang, WANG Qi-zhen, LI Jun, WAN Peng. Preparation and Properties of Zr55Cu30Al10Ni5 Amorphous Thin Films [J]. VACUUM, 2022, 59(5): 1-6.
[5] LIU Xiao-gong, JIANG Nan, HAO Qi-zan, LUO Liang, SHI Zhen-xue, LUO Yu-shi. Experimental Research on Casting Dimension Effect of Single Crystal Superalloy [J]. VACUUM, 2022, 59(3): 80-85.
[6] SONG Jing-si, WANG Ting, LI Xiu-zhang, CHEN Jiu-qiang, ZHANG Zhe-kui. Study on the Structure Layout of a Large Vacuum Precision Casting Furnace [J]. VACUUM, 2021, 58(2): 31-36.
[7] TAN Fei, LIN Song-sheng, SHI Qian, DAI Ming-jiang, DU Wei, WANG Yun-cheng, LV Liang. Fabrication of NiCrAlY Coating by Arc Ion Plating and Its High Temperature Oxidation Resistance [J]. VACUUM, 2020, 57(5): 7-10.
[8] WANG Kai, XU Zhen-hua, ZHEN Zhen, DAI Jian-wei, WANG Xin, HE Li-min. Effect of Grit Blasting on the Recrystallization, Elemental Diffusion Behaviors of Single Crystal Superalloy [J]. VACUUM, 2020, 57(3): 25-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .