欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2023, Vol. 60 ›› Issue (6): 84-86.doi: 10.13385/j.cnki.vacuum.2023.06.14

• Vacuum Acquisition System • Previous Articles     Next Articles

Application of Vacuum in High Altitude Simulation Systems

LIU Zhong-bo   

  1. Shenyang KingCareer Technology Co., Ltd., Shenyang 110031, China
  • Received:2023-08-25 Online:2023-11-25 Published:2023-11-27

Abstract: In high-altitude environments, both temperature and air pressure will significantly decrease, which have a certain impact on the human body and equipment. Through high altitude simulation systems, the performance and adaptability of materials, devices, equipment, and organisms in high altitude environments can be tested. This article is based on the Chengdu XX wind tunnel project, a high altitude simulation system is designed by using a vacuum pump to simulate the altitude of the wind tunnel, and the changes of temperature and humidity with the altitude is also considered. The design parameters, composition, working principle, and operation process of the system is introduced detailedly.

Key words: high altitude simulation system, vacuum pump, regulating valve, vacuum degree

CLC Number:  TB79

[1] 马永福,王理丽,蒋玲,等. 高海拔环境对电气试验设备电场及绝缘影响研究[J]. 青海电力,2020,39(2):25-30.
[2] 董小强. 18kV电气设备在高海拔地区热平衡修正计算的应用[J]. 小水电,2020(2):26-29.
[3] SCHMITZ J, VARGHESE L J K, LIEBOLD F, et al. Influence of 30 and 60 min of hypobaric hypoxia in simulated altitude of 15,000 ft on human proteome profile[J]. International Journal of Molecular Sciences, 2022,23(7):3909.
[4] WANG J N, LIU S Y, XIE Y L, et al.Association analysis of gut microbiota-metabolites-neuroendocrine changes in male rats acute exposure to simulated altitude of 5500 m[J]. Scientific Reports,2023,13(1):9225.
[5] SONG Q Y, LIU S Y, WANG J N, et al.Hypoxia promotes white adipose tissues browning in rats under simulated environment at altitude of 5000 m[J]. Biochemical and Biophysical Research Communications. 2023,666:146-153.
[6] 王衍超,曾权,王磊,等. 某高压共轨柴油发电机组高海拔地区应用分析[J]. 柴油机,2022,44(1):14-17.
[7] 熊春友. 二级增压柴油机高海拔模拟试验系统及方法[J]. 内燃机与配件,2019(17):67-70.
[8] 熊春友. 高海拔柴油机燃烧过程研究综述[J]. 内燃机与配件,2019(15):45-46.
[9] 郑建福. 微处理机测量湿度计算方法的讨论[J]. 环境条件与试验,1987(6):19-22.
[10] 余秉权. 大马力深度抽真空装置的控制[J]. 石油化工自动化,2004(2):53-55.
[11] 杨婉婷. 水氡观测自动鼓泡装置研究与初步设计[J].科技与创新,2023(15):11-13.
[12] COHEN G.Interconnected neural networks drive breakthrough optimization[J]. Hydrocarbon Processing,2021,100(3):15-16.
[13] 毛庆,刘静敏,滕顺高. 铜阳极炉多氧燃烧先进控制系统设计[J]. 自动化仪表,2023,44(8):27-31.
[14] 张新红,华宁,郑清启.高海拔高寒地区环境对采矿机械性能的影响及实际解决方案的研究[J].新疆有色金属,2019(1):101.
[15] 张成,李辉辉,刘阳. 航天炉装置氧煤控制的优化与应用[J]. 氮肥与合成气,2023,51(6):18-20.
[16] 郭焱旭. 破碎岩体多模式注浆加固机理及应用[D].济南:山东大学,2022.
[17] 熊雄,刘永龙,周焱民,等. 给水泵出口管路压力及汽包进水流量控制优化实践[J]. 宽厚板,2021,27(2):27-30.
[18] 王瑞雪,刘星,卢钦强,等. 提升无级变速器高压输出压力精度的方法分析[J]. 液压气动与密封,2023,43(7):85-88.
[1] WU Xiu-hai, MA Yun-fang, CHEN Hai-yao. Design and Test of Screw Vacuum Pump with Low Specific Power And Wide Working Capacity [J]. VACUUM, 2023, 60(6): 71-77.
[2] LI Xing-hui, DU Ting, HAN Pan-yang, CHEN Hai-jun, CAI Jun, FENG Jin-jun. Technology Review of Vacuum Micropumps [J]. VACUUM, 2023, 60(4): 54-59.
[3] REN Chang-qing, XU Fa-jian, HUANG Zhi-ting, YUAN Zheng, ZHANG Ze-sheng. Research on Screw Dry Vacuum-Compression System with Scene as Design Input [J]. VACUUM, 2023, 60(3): 46-50.
[4] DU Shan-guo, LI Bo, LI Qiang, XU You-min. Design and Optimization of Dust Removal System for Mechanical Vacuum Pump [J]. VACUUM, 2023, 60(3): 51-54.
[5] LI Zheng-qing, WANG Xiao-jun, HAN Xian-hu, CAI Yu-hong, LI Xiao-jin, YANG Jian-bin. Design and Machining of Circular Rotor Profiles for Roots Vacuum Pumps [J]. VACUUM, 2023, 60(1): 36-41.
[6] LU Shao-bo, SONG Yan-peng, HAN Yong-chao, ZHANG Ji-feng, TANG Rong. Optimization and Diagnosis of Thermal Vacuum Test Equipment for Space TWTs [J]. VACUUM, 2023, 60(1): 46-50.
[7] SUN Kun, LI Kun, WANG Sen-hui, WANG Cheng, WANG Long, LAI Yong-bin. Design and Counter Measure of Screw Vacuum Pump under “Double Carbon” Vision [J]. VACUUM, 2023, 60(1): 57-61.
[8] ZHANG Bao-fu, YU Yang, GAO Xun-yi, LI Jin-jian, WANG Jian-guo, WANG Ling-ling. Application of High Differential Pressure Roots Pump Combination Pumping System for Large Vacuum Distillation Deep Cut Unit [J]. VACUUM, 2022, 59(5): 45-49.
[9] LIU Ming-kun, LI Dan-tong, XING Zi-wen. Research Progress of the Inner Compression Rotor Structure of Twin-Screw Vacuum Pumps [J]. VACUUM, 2022, 59(4): 28-32.
[10] ZHAO Xi-hao, ZHAO Li-zhuang, WANG Jun, LI Xue-qin, CUI Feng, WANG Zeng-li, GENG Mao-fei. Design and Analysis of New Sinusoidal Helical Screw Rotor for Twin-Screw Vacuum Pump [J]. VACUUM, 2022, 59(3): 1-6.
[11] LIU Sheng, CUI Yu-hao, DOU Ren-chao, SHI Li-xia, SUN Li-chen, REN Guo-hua, YAN Rong-xin. Numerical Simulation on Internal Pressure Variation of Test Specimens During Vacuum Test [J]. VACUUM, 2022, 59(3): 12-15.
[12] HU Rong-xing, ZHANG Heng, YU Qing-zhou, SHU Xiao-dong, GAN Shu-yi. Development of Virtual Vacuum Acquisition Device Performance Test System Based on Unity3D Platform [J]. VACUUM, 2022, 59(3): 20-24.
[13] ZHANG Shi-wei, GAO Lei-ming, LI Run-da, MAN Yong-kui, DU Yuan-peng, WANG Bo, XU Zu-jin. Comparative Study on Pumping Characteristics of the Roots Vacuum Unit in Start-up Process [J]. VACUUM, 2022, 59(1): 1-6.
[14] QI Da-wei, LI Wei-hua, LI Chuan-xu, WU Bin, CHEN De-jiang, TANG Zhi-gong. Pneumatic Design of Centrifugal Vacuum Pump for Large Wind Tunnel [J]. VACUUM, 2021, 58(4): 49-53.
[15] MA Yi-Gang, LI Zhi-hui. Application of Ultra-high and High Vacuum Technology [J]. VACUUM, 2021, 58(4): 98-102.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .