欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2024, Vol. 61 ›› Issue (5): 64-73.doi: 10.13385/j.cnki.vacuum.2024.05.09

Previous Articles     Next Articles

The Development of a Novel Photocathode

LIU Yan-wen1, SHANG Xin-wen1, LU Yu-xin2, TIAN Hong1, ZHAO Heng-bang1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China;
    2. Tianjin Traffic Vocational Institute, Tianjin 300110, China
  • Received:2024-04-24 Online:2024-09-25 Published:2024-10-10

Abstract: To meet the needs of high-frequency, miniaturized vacuum microwave devices, and find suitable cathode materials and laser systems, a strategy to develop new type of Cs3Sb cathode was studied. A tungsten sponge diffusion barrier layer was used as the evaporation source of the emission material, instead of the traditional nickel tube heating method. In order to enhance the adsorption capacity and light absorption rate of the cathode, the surface of the cathode substrate was modified by nanoparticle thin film coating and ion beam surface modification. The photoemission characteristics of the photocathodes before and after surface modification of the photocathode were studied. The results show that the photoemission quantum efficiency increases greatly after modification. It is believed through analysis that the main cause for the increase in quantum efficiency is the enhancement of light absorptivity and the increase in emission surface area.

Key words: photocathode, driven by laser, porous tungsten, nanoparticle film, ion beam surface modification, quantum yield

CLC Number:  TN105.1

[1] LIU Y W, TIAN H, LU Y X, et al.Influences of diamond material on heat dissipation capabilities of helical slow wave structures[J]. IEEE Transactions on Electron Devices, 2019, 66(12): 5321-5326.
[2] 刘燕文, 田宏, 韩勇, 等. 支取发射电流过程对热阴极温度影响的研究[J]. 中国科学E辑: 技术科学, 2008, 38(9): 1515-1520.
[3] LIU Y W, TIAN H, HAN Y, et al.Temperature variation of a thermionic cathode during electron emission[J]. Science in China Series E: Technological Sciences, 2008, 51: 1497-1501.
[4] 王小霞, 廖显恒, 罗积润, 等. 新型贮存式氧化物阴极寿命机理的初步探讨[J]. 物理学报, 2009, 58(2): 1280-1286.
[5] WANG X X, LIAO X H, LUO J R.Study on the Ni-Re-Ir sponge oxide cathode[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 492-495.
[6] GÄRTNER G, JANIEL P, RAASCH D. Direct determination of electrical conductivity of oxide cathodes[J]. Applied Surface Science, 2002, 201(1-4): 35-40.
[7] RAJU R S, MALONEY C E.Characterization of an impregnated scandate cathode using a semiconductor model[J]. IEEE Transactions on Electron Devices, 1994, 41(12): 2460-2467.
[8] WANG J S, LIU W, LI L L, et al.A study of scandia-doped pressed cathodes[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 799-804.
[9] MELNIKOVA I P, VOROZHEIKIN V G, USANOV D A.Correlation of emission capability and longevity of dispenser cathodes with characteristics of tungsten powders[J]. Applied Surface Science, 2003, 215(1-4): 59-64.
[10] LIU Y W, TIAN H, HAN Y, et al.Study on the emission properties of the impregnated cathode with nanoparticle films[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3618-3624.
[11] 刘燕文, 刘胜英, 田宏, 等. 用于空间行波管的高效率覆膜阴极组件的研究[J]. 真空科学与技术学报, 2006, 26(3): 240-242.
[12] BARIK R K, BERA A, RAJU R S, et al.Development of alloy-film coated dispenser cathode for terahertz vacuum electron devices application[J]. Applied Surface Science, 2013, 276: 817-822.
[13] ISAGAWA S, HIGUCHI T, KOBAYASHI K, et al.Application of M-type cathodes to high-power cw klystrons[J]. Applied Surface Science, 1999, 146(1-4): 89-96.
[14] 刘燕文, 田宏. 小多注速调管覆膜阴极的制备方法: CN00132779.8[P].2002-06-19.
[15] ZHU J, WANG S L, XIE S H, et al.Hexagonal single crystal growth of WO3 nanorods along a [110] axis with enhanced adsorption capacity[J]. Chemical Communications, 2011, 47(15): 4403-4405.
[16] WANG H L, HAO Q L, YANG X J, et al.A nanostructured graphene/polyaniline hybrid material for supercapacitors[J]. Nanoscale, 2010, 2(10): 2164-2170.
[17] WANG S L, HE Y H, LIU X L, et al.Large-scale synthesis of tungsten single-crystal microtubes via vapor-deposition process[J]. Journal of Crystal Growth, 2011, 316(1): 137-144.
[18] WHALEY D, DUGGAL R, ARMSTRONG C, et al.High average power field emitter cathode and testbed for X/Ku-band cold cathode TWT[C]// 2013 IEEE 14th International Vacuum Electronics Conference (IVEC). Paris, France: IEEE, 2013.
[19] LIU Y W, ZHANG G M, XUE Z Q, et al.The high field enhancement of photoemission from Na2KSb photocathodes[J]. Nuclear Instruments and Methods in Physics Research Section A, 1996, 376(1): 146-147.
[20] 刘燕文, 王国建, 田宏, 等. 激光驱动的新型光电阴极[J]. 中国科学: 信息科学, 2021, 51(9): 1575-1586.
[21] 刘燕文, 田宏, 陆玉新, 等. 用于微波真空电子器件的光电阴极[J]. 真空, 2019, 56(6): 7-11.
[22] 刘燕文, 张耿民, 刘惟敏, 等. 激光驱动的钠钾锑光电阴极的稳定性研究[J]. 中国激光, 1996, 23(3): 255-259.
[23] LEE C H, OETTINGER P E, PUGH E R, et al.Electron emission of over 200 A/cm2 from a pulsed-laser irradiaied photocaihode[J]. IEEE Transactions on Nuclear Science, 1985, 32(5): 3045-3047.
[24] STEIN W, WARREN R, WINSTON J, et al.The accelerator for the Los Alamos free-electron laser-IV[J]. IEEE Journal of Quantum Electronics, 1985, 21(7): 889-894.
[25] OETTINGER P E, SHEFER R E, BIRX D L, et al.Photoelectron sources: selection and analysis[J]. Nuclear Instruments and Methods in Physics Research Section A, 1988, 272(1/2): 264-267.
[26] 张篁, 陈德彪, 江孝国, 等. 直线感应加速器用光阴极实验研究[J]. 强激光与粒子束, 2010, 22(3): 583-586.
[27] 刘燕文, 张耿民, 刘惟敏, 等. 激光驱动的钠钾锑光电阴极的光电发射特性[J]. 北京大学学报: 自然科学版, 1996, 32(1): 96-102.
[28] SOMMER A H.Brief history of photoemissive materials[C]//Photodetectors and Power Meters. San Diego, CA, United States: SPIE, 1993, 2022: 2-17.
[29] SOMMER A H.光电发射材料:制备、特性与应用 [M]. 侯洵, 译. 北京:科学出版社, 1979:1-4.
[30] WU C I, KAHN A.Negative electron affinity and electron emission at cesiated GaN and AlN surfaces[J]. Applied Surface Science, 2000, 162: 250-255.
[31] 乔建良, 常本康, 钱芸生, 等. 负电子亲和势GaN光电阴极光谱响应特性研究[J]. 物理学报, 2010 (5): 3577-3582.
[32] ULMER M P, WESSELS B W, SHAHEDIPOUR F, et al.Progress in the fabrication of GaN photocathodes[C]// Photodetectors: Materials and Devices VI. San Jose, CA, United States: SPIE, 2001, 4288: 246-253.
[33] BATES R, CAMPBELL M, DA VIA C, et al.Developments in GaAs pixel detectors for X-ray imaging[C]// 1997 IEEE Nuclear Science Symposium Conference Record. NM, USA:IEEE, 1997: 534-540.
[34] MACHUCA F, LIU Z, SUN Y, et al.Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes[J]. Journal of Vacuum Science & Technology B, 2003, 21(4): 1863-1869.
[35] 刘燕文, 田宏, 李芬, 等. 碱金属源的制备装置及制备方法: CN202110202475.9[P].2021-06-22.
[36] 刘燕文, 田宏, 李芬, 等. 光电阴极及其制备方法: CN201810512769.X[P].2018-08-31.
[37] 刘燕文, 李芬, 田宏, 等. 一种光电阴极及其制备方法: CN202011316694.1[P].2021-02-26.
[38] 刘燕文, 田宏, 李芬, 等. 钨海绵基体浸铜方法及装置: CN202111095729.8[P].2021-12-14.
[39] 刘燕文, 陆玉新, 张晓林, 等. 多孔钨材料及零件的研究进展[J]. 真空, 2023, 60(2): 1-13.
[40] 刘燕文, 王小霞, 朱虹, 等. 钨海绵基体去铜的方法: CN201310208189.9 [P].2014-03-12.
[41] 刘燕文, 田宏, 陆玉新, 等. 用于浸渍阴极的钨海绵基体的净化[J]. 真空科学与技术学报, 2018, 38(2): 144-149.
[42] ALIVISATOS A P.Semiconductor clusters, nanocrystals, and quantum dots[J]. Science, 1996, 271(5251): 933-937.
[43] VOSSMEYER T, KATSIKAS L, GIERSIG M, et al.CdS nanoclusters: synthesis, characterization, size dependent oscillator strength, temperature shift of the excitonic transition energy, and reversible absorbance shift[J]. The Journal of Physical Chemistry, 1994, 98(31): 7665-7673.
[44] 王国建, 刘燕文, 李芬, 等. 离子束表面处理对光电阴极发射的影响[J]. 物理学报, 2021, 70(21): 356-363.
[45] CURREN A N, LONG K J, JENSEN K A, et al.An effective secondary electron emission suppression treatment for copper MDC electrodes[C]//Proceedings of IEEE International Electron Devices Meeting. Washington, DC, USA: IEEE, 1993: 777-780.
[46] DING M Q, HUANG M G, FENG J J, et al.Ion surface modification for space TWT multistage depressed collectors[J]. Applied Surface Science, 2008, 255(5): 2196-2199.
[47] 刘燕文, 田宏, 朱虹, 等. 电子轰击材料出气性能[J]. 真空科学与技术学报, 2017, 37(4): 363-368.
[48] 崔云康, 张晓兵, 雷威, 等. 电真空器件残气质谱分析和贮存寿命的快速测试研究[J]. 真空科学与技术学报, 2007, 27(1): 80-83.
[49] 刘燕文, 孟宪展, 田宏, 等. 空间行波管极高真空的获得与测量[J]. 真空, 2018, 55(5): 25-28.
[50] 郎兴凯, 贾鹏, 陈泳屹, 等. 窄线宽半导体激光器研究进展[J]. 中国科学: 信息科学, 2019, 49(6): 649-662.
[51] LIU Y, TIAN H, LI F, et al.Effects of nanomaterials on Cs3Sb photocathode emission performance[J]. AIP Advances, 2022, 12(3): 035004.
[52] LIU Y, LI F, TIAN H, et al.Influence of ion beam surface treatment on the emission performance of photocathodes[J]. Nanoscale Advances, 2022, 4(17): 3517-3523.
[1] LIU Yan-wen, LU Yu-xin, ZHANG Xiao-lin, MENG Ming-feng, LI Fen, ZHAO Heng-bang, WANG Xiao-xia. Research Progress of the Porous Tungsten Materials and Parts [J]. VACUUM, 2023, 60(2): 1-13.
[2] SHI Wen-qi, ZHANG Lian-zheng, LU Yu-xin, TIAN Hong, ZHU Hong, ZHAO Heng-bang, WANG Xiao-xia, LIU Yan-wen. Research Progress of Photocathode [J]. VACUUM, 2020, 57(3): 42-48.
[3] LIU Yan-wen, TIAN Hong, LU Yu-xin, SHI Wen-qi, ZHU Hong, LI Fen, LI Yun, GU Bing, WANG Xiao-xia. Photocathode Used as Microwave Vacuum Electronic Devices [J]. VACUUM, 2019, 56(6): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[4] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[5] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .
[6] XU Fa-jian, WANG Hai-lei, ZHAO Cai-xia, HUANG Zhi-ting. Application of chemical gases vacuum-compression recovery system in environmental engineering[J]. VACUUM, 2018, 55(5): 29 -33 .
[7] XIE Yuan-hua, HAN Jin, ZHANG Zhi-jun, XU Cheng-hai. Discussion on present situation and development trend of vacuum conveying[J]. VACUUM, 2018, 55(5): 34 -37 .
[8] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[9] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[10] CHANG Zhen-dong, MU Ren-de, HE Li-min, HUANG Guang-hong, LI Jian-ping. Reflectance spectroscopy study on TBCs prepared by EB-PVD[J]. VACUUM, 2018, 55(5): 46 -50 .