欢迎访问沈阳真空杂志社 Email Alert    RSS服务

VACUUM ›› 2020, Vol. 57 ›› Issue (3): 42-48.doi: 10.13385/j.cnki.vacuum.2020.03.10

• Measurement and Control • Previous Articles     Next Articles

Research Progress of Photocathode

SHI Wen-qi1,3, ZHANG Lian-zheng1, LU Yu-xin2, TIAN Hong1, ZHU Hong1, ZHAO Heng-bang1, WANG Xiao-xia1, LIU Yan-wen1   

  1. 1. Aerospace Information Research Institute, Chinese Academy of Science, Beijing 100080, China;
    2. Tianjin Traffic Vocational Institute, Tianjin 300110, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2019-03-30 Published:2020-06-18

Abstract: The material of photocathode determines the important properties of photoemission, such as quantum efficiency, dark emission current and energy distribution of emitted electrons. Various types of photocathode emission materials, including alkali metal and semiconductor materials, are introduced in this paper. Among them, the multi-alkali photocathode and negative electron affinity (NEA) photocathode in semiconductor materials are mainly introduced, and the preparation process and performance test of the multi-alkali photocathode and the factors affecting the quantum efficiency of NEA photocathode are analyzed in detail.

Key words: photoelectric emission, multi-alkali photocathode, NEA photocathode, quantum efficiency

CLC Number: 

  • O462.3
[1] 刘燕文, 张耿民, 刘惟敏, 等. 激光驱动的钠钾锑光电阴极的光电发射特性[J]. 北京大学学报(自然科学版), 1996, (1):96-102.
[2] Sommer A H.Brief-History of Photoemissive Materials[J]. P Soc Photo-Opt Ins, 1993, 2022(2-17).
[3] Sommer A H.光电发射材料制备、特性与应用[M]. 北京:科学出版社,1979: 1-4.
[4] 钱长炎. 赫兹对光电效应的研究及其历史意义[J]. 自然杂志, 2003, (2):117-122.
[5] 罗平. 赫兹对光电效应的发现及其影响[J]. 巢湖学院学报, 2003, (3):32-34+47.
[6] 蒋长荣, 刘树勇. 爱因斯坦和光电效应[J]. 首都师范大学学报(自然科学版), 2005, (4):32-37.
[7] 王晓耘. 超高速光电管中反射式银氧铯光电阴极的研究[J]. 光电子技术, 2004, (2):81-3+8.
[8] 刘燕文,张耿民,刘惟敏,等. 激光驱动的钠钾锑光电阴极的稳定性研究[J]. 中国激光, 1996, (3):255-9.
[9] Guemez U J, Fiolhais M.Relativistic description of the photoelectric effect[J]. Am. J. Phys., 2018, 86(11):825-830.
[10] Mccarroll W H, Paff R J, Sommer A H.Role of Cs in(Cs)Na2KSb(S-20) Multialkali Photocathode[J]. J. Appl. Phys., 1971, 42(2):569.
[11] Sommer A.H. Relationship between Photoelectric and Secondary Electron Emission, with Special Reference to Ag-O-Cs(S-1) Photocathode[J]. J. Appl. Phys., 1971, 42(2):567.
[12] Sommer A.H. Stability of Photocathodes[J]. Appl Optics, 1973, 12(1):90-92.
[13] Sommer A.J. , Leidheiser H. Effect of Alkali-Metal Hydroxides on the Dissolution Behavior of a Zinc Phosphate Conversion Coating on Steel and Pertinence to Cathodic Delamination[J]. Corrosion, 1987, 43(11):661-665.
[14] 李飙, 任艺, 常本康. 热退火对GaN阴极光电发射性能的影响[J]. 电子器件, 2019, (1):1-4.
[15] 李朝木, 朱宝元. 锑钾铷铯光电阴极的特性研究[J]. 真空与低温, 1993, (2):65-67.
[16] Niu J, Zhang Y J, Chang B K, et al.Influence of exponential doping structure on the performance of GaAs photocathodes[J]. Appl. Optics., 2009, 48(29):5445-5450.
[17] Liu Y W, et al.The high field enhancement of photoemission fome Na2KSb photo-cathodes[J]. Nucl. Instr. meth. phys. Res. 1996, A376:146-147.
[18] 李晓峰, 冯刘, 陆强. 多碱阴极光电发射理论研究[J]. 光子学报, 2013, 42(10):1176-1181.
[19] Dolizy P, Luca O D, Deloron M A.锑、钠、钾、铯型多碱锑化物的光电发射[J]. 红外技术, 1985, (1):50-53.
[20] 付小倩. GaN基光电阴极的结构设计与制备研究[D]. 南京: 南京理工大学, 2015.
[21] 谢运涛, 孙晓泉, 王玺, 等. 多碱光电阴极饱和机理研究[J]. 国防科技大学学报, 2018, 40(4):28-34.
[22] 吴全德. 银氧铯和多碱光电阴极的若干问题[J]. 红外技术, 1979, (4):1-25.
[23] 吴全德. 关于银氧铯光电阴极的发射机理[J]. 科学通报, 1978, (7):410-414.
[24] 史久德. 复蒸银对银氧铯光电阴极特性的改进[J]. 真空科学与技术, 1992, (6):437-440.
[25] 常本康. NEA GaN和GaAs光电阴极的比较[J]. 红外技术, 2017, 39(12):1073-1077.
[26] 王旺平, 马建一. 近红外响应的Ⅲ-V族半导体光电阴极材料及工艺[J]. 光电子技术, 2013, 33(3):194-7+207.
[27] Antonova L I, Denisov V P, Isayeva N A.Nea GaAs-Sb-Cs-O-Photocathode[J]. Radiotekh Elektron+, 1988, 33(11):2446-2448.
[28] 李飙, 任艺, 常本康, 等. 负电子亲和势GaN阴极光电发射机理研究[J]. 材料导报, 2016, 30(8):37-40.
[29] 马力. NEA GaN光电阴极光电发射特性研究[D]. 南京: 南京理工大学, 2013.
[30] Chang B K, Liu W L, Fu R G, et al.Spectral response and surface layer thickness of GaAs:Cs-O negative electron affinity photo-cathode[J]. Apoc 2001:Asia-Pacific Optical and Wireless Communications:Optoelectronics, Materials, and Devices for Communications, 2001, 4580(632-641).
[31] 赵静. 透射式GaAs光电阴极的光学与光电发射性能研究[D]. 南京: 南京理工大学, 2013.
[32] 赵静, 余辉龙, 刘伟伟, 等. 砷化镓光电阴极光谱响应与吸收率关系分析[J]. 物理学报,2017,66(22):319-325.
[33] Wu C I, Kahn A.Negative electron affinity and electron emission at cesiated GaN and AlN surfaces[J]. Appl. Surf. Sci., 2000,162(250-255).
[34] 乔建良,常本康,钱芸生, 等. 负电子亲和势GaN光电阴极光谱响应特性研究[J]. 物理学报, 2010, 59(5):3577-3582.
[35] Ulmer M P, WESSELS B W, Shahedipour F, et al.Progress in the fabrication of GaN photo-cathodes[J]. Photodetectors:Materials and Devices Vi, 2001, 4288(246-253).
[36] Bates R, Campbell M, Davia C, et al.Developments in GaAs pixel detectors for X-ray imaging[C]. 1997 Ieee Nuclear Science Symposium-Conference Record, Vols 1 & 2, 1998: 534-540.
[37] Machuca F, Liu Z, Sun Y, et al.Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes[J]. J. Vac. Sci. Technol. B, 2003, 21(4):1863-1869.
[38] 李飙, 任艺, 常本康. 梯度掺杂结构GaN光电阴极的稳定性[J]. 中国光学, 2018, 11(4):677-683.
[39] Qiao J L, Chang B K, Qian Y S, et al.Study on photoemission mechanism for negative electron affinity GaN vacuum electron source[J]. Phys Status Solidi C, 2012, 9(1).
[40] Qiao J L, Li X J, Niu J, et al.Quantum Yield of Reflection Mode Varied Doping GaN Photocathode[J]. Matec. Web Conf., 2016, 67.
[41] Yang Z, Chang BK, Zou J, et al.Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode[J]. Appl. Optics,2007,46(28):7035-7039.
[42] 王晓晖.纤锌矿结构GaN(0001)面的光电发射性能研究[D]. 南京: 南京理工大学,2013.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LI De-tian, CHENG Yong-jun, ZHANG Hu-zhong, SUN Wen-jun, WANG Yong-jun, SUN Jian, LI Gang, . Preparations and applications of carbon nanotube field emitters[J]. VACUUM, 2018, 55(5): 1 -9 .
[2] ZHOU Bin-bin, ZHANG jian, HE Jian-feng, DONG Chang-kun. Carbon nanotube field emission cathode based on direct growth technique[J]. VACUUM, 2018, 55(5): 10 -14 .
[3] LI Zhi-sheng. Development of ultra large shielded door for infrared calibration in simulated space environment[J]. VACUUM, 2018, 55(5): 66 -70 .
[4] ZHENG Lie, LI Hong. Design of 200kV/2mA continuous adjustable DC high voltage generator[J]. VACUUM, 2018, 55(6): 10 -13 .
[5] CHAI Xiao-tong, WANG Liang, WANG Yong-qing, LIU Ming-kun, LIU Xing-zhou, GAN Shu-yi. Operating parameter data acquisition system for single vacuum pump based on STM32F103 microcomputer[J]. VACUUM, 2018, 55(5): 15 -18 .
[6] SUN Li-zhi, YAN Rong-xin, LI Tian-ye, JIA Rui-jin, LI Zheng, SUN Li-chen, WANG Yong, WANG Jian, . Research on distributing law of Xenon in big accumulation chamber[J]. VACUUM, 2018, 55(5): 38 -41 .
[7] HUANG Si, WANG Xue-qian, MO Yu-shi, ZHANG Zhan-fa, YING Bing. Experimental study on similarity law of liquid ring compressor performances[J]. VACUUM, 2018, 55(5): 42 -45 .
[8] JI Ming, SUN Liang, YANG Min-bo. Design of automatic sealing and locking scheme for lunar sample[J]. VACUUM, 2018, 55(6): 24 -27 .
[9] LI Min-jiu, XIONG Tao, JIANG Ya-lan, HE Yan-bin, CHEN Qing-chuan. 20kV high voltage based on double transistor forward converter pulse power supply for metal deburring[J]. VACUUM, 2018, 55(5): 19 -24 .
[10] LIU Yan-wen, MENG Xian-zhan, TIAN Hong, LI Fen, SHI Wen-qi, ZHU Hong, GU Bing. Test of ultra high vacuum in space traveling-wave tube[J]. VACUUM, 2018, 55(5): 25 -28 .